А как быть с тем фактом, что истинность этого утверждения является "физическим", объективным фактом? Ну например, вопрос о бесконечности простых чисел близнецов имеет объективный ответ, да или нет, независимо ни от каких аксиом, т.к. натуральные числа "даны нам Богом". И как это осмыслить?
Знаете прикол с
кубиком Неккера?
Я на натуральные числа так же смотрю - и не понимаю, что вижу)) С одной стороны вроде бы да - "даны Богом", независимы от формальных систем, аксиоматик, имеют объективный характер и т.д. Но иногда у меня закладывается зерно сомнений. Вот взять ту же теорему Гудстейна. При ее доказательстве вроде бы используется трансфинитная индукция (я очень давно разбирал ее доказательство и могу уже многое не помнить, но там основной финт кажется в том, что ординалы оказываются не вполне упорядоченным множеством, а это не так ----> противоречие). А если я например идейный противник трансфинитной индукции? Тогда для меня уже нету этого доказательства. А вдруг трансфинитная индукция - противоречивая и ложная штука? Может быть нам просто повезло, что "маленькие" последовательности Гудстейна оканчиваются нолем, но "на самом деле" найдется последовательность, нолем не оканчивающаяся? Ну а правда - такое можно представить, если бы вдруг оказалось, что трансфинитная индукция - плохой способ рассуждений. Я знаю, что в
с трансфинитной индукцией все в порядке, но по-моему, на таком уровне рассмотрения, когда Вы принимаете существование "объективных" способов рассуждения (т.е. как бы самоочевидных и независящих от конкретных формальных систем) - это не аргумент (а я как раз как бы принимаю их существование; по крайней мере мне периодически так кажется). Можете заменить трансфинитную индукцию на аксиому выбора и оставить примерно те же аргументы.
Кстати, вот что подумал. А существуют ли утверждения о натуральных числах, независящие от аксиом ZFC? Я таких не встречал.