Я уже не в первый раз наблюдаю,
Doctor Boom в url=http://dxdy.ru/post1591296.html#p1591296]сообщении #1591296[/url] писал(а):
зачем к другим лезть?
Как я наблюдаю, это как раз вы ко мне в последнее время пристаете, неизвестно с чего, то в
одной теме, то в другой.
Ну решайте вы свои суперсложные, никому кроме вас не интересные задачи суперметодами,
Задачи, которыми я занимаюсь, действительно сложные, это правда. Тут вы угадали. А вот насчет что "никому не интересные" --- полностью промазали. Телепат и ясновидец так себе оказались.
Позволю себе для развлечения почтенной публики привести примеры задач, которые являются очень сложными. Причем не сверхсложными, а гиперсложными, в

раз сложнее тех, в которых я принимаю скромное участие. Это задачи не из той деятельности, к которой я сам имею отношение, а просто видел упоминания о них в тырнете. Так что наверняка много перевру.
(1) Когда-то видел оценку такого типа: Рассчитать волновую функцию молекулы метана в основном состоянии требует

арифметических операций (заранее извиняюсь, что тут всё переврано, потому что помню очень смутно).
(2) Есть такой род задач: известна аминокислотная последовательность белка, т.е. его первичная структура. Надо найти третичную структуру, т.е. как молекула его сворачивается в пространстве. Сейчас ее приноровились решать с помощью ИИ, то есть: есть массив экспериментальных данных, когда такая структура известна. Дальше на это напускают ИИ, оно обнаруживает какие-то закономерности, и выдает предсказание для новых случаев, когда первичная структура известна, а третичная нет. Совпадение с экспериментальными результатами бывает поразительное.
Но заметим, что, теоретически, эту задачу можно было бы решать просто из первых принципов, т.е. из квантовой механики ! Вот это и есть еще одна задача.
(Ну и есть, несомненно, много более близких производственно-технических задач, которые не сверхсложные, а просто очень сложные, но в пределах разрешимости. Особенно нынче. Да хоть тот же ... ах ты черт, просили этот предмет не обсуждать. В этих задачах тоже, конечно, есть работа для математиков, а не только для физиков и инженеров. Впрочем, эти темы не будем развивать в пределах форума. А то политсрач. Хотя на самом деле такие задачи существуют в любой общественно-политической обстановке, так как техника и т.д. существует везде, а политика только привносит некоторые нюансы. И задачи, возникающие из науки и техники, бывают очень сложные и интересные. )
(3) И, наконец, проблема переборных задач. Было бы с моей стороны нескромно высказывать предположения, насчет равно

классу

или таки не равно. (Если что, то по результатам опросов в течение нескольких лет 9 % специалистов считают, что равно, а остальные --- что нет. Как-то так). Но отчего бы не допустить, что на самом деле сложность таких задач хоть и не полиномиальная, но субэкспоненциальная, типа

для произвольного

, или вообще

?