2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5
 
 Re: Электротехника. Длинные линии
Сообщение19.12.2024, 08:12 
Аватара пользователя


11/12/16
14035
уездный город Н
Amw в сообщении #1666027 писал(а):
Для синусоидальных сигналов можно выразить комплексной величиной, но и мгновенное значение этого параметра для ЛЮБЫХ сигналов знать не вредно...


Вред очевиден. Вы зачем-то этот агрегат называете "импеданс", чем путаете себя и других.
А вот польза от этого агрегата - сомнительна.

Amw в сообщении #1666048 писал(а):
А можно по току и сопротивлению или по напряжению и сопротивлению (которое по-Вашему не импеданс)?

Это не "по моему", а по определению.

Amw в сообщении #1666048 писал(а):
первого отражения импеданс линии становится отрицательным (хотя и остается действительным, поскольку нагрузка чисто активная и длина линии полволны. При длинах не кратных четверти волны появится и мнимая часть импеданса)


Прекратите называть отношение мгновенного значения напряжения к мгновенному значению тока импедансом!

Цитата:
Импедансом ${\hat {z}}(j\omega )$ называется отношение комплексной амплитуды напряжения гармонического сигнала, прикладываемого к двухполюснику, к комплексной амплитуде тока, протекающего через двухполюсник в установившемся режиме, то есть после завершения переходных процессов.

 Профиль  
                  
 
 Re: Электротехника. Длинные линии
Сообщение19.12.2024, 09:15 
Аватара пользователя


22/07/11
867
EUgeneUS в сообщении #1666049 писал(а):
Прекратите называть отношение мгновенного значения напряжения к мгновенному значению тока импедансом!
Я отношение не мгновенных значений называю импедансом, а $U(t)$ синусоидальной формы делю на $I(t)$ и получаю импеданс. Не моя вина, что в Вашем примере это отношение не комплексное и численно равно и отношению амплитуд и отношению мгновенных значений в любой момент времени.

 Профиль  
                  
 
 Re: Электротехника. Длинные линии
Сообщение19.12.2024, 09:29 


27/08/16
10450
Amw в сообщении #1666058 писал(а):
Я отношение не мгновенных значений называю импедансом, а $U(t)$ синусоидальной формы делю на $I(t)$ и получаю импеданс.
И в чём разница?

Amw в сообщении #1666058 писал(а):
Не моя вина, что в Вашем примере это отношение не комплексное и численно равно и отношению амплитуд и отношению мгновенных значений в любой момент времени.
Импеданс - это отношение комплексного напряжения к комплексному току на определённой частоте. По определению. Вы неправильно используете термин для того, что им не является. Естественно, вас не понимают.

А что вы знаете про преобразование Фурье?

 Профиль  
                  
 
 Re: Электротехника. Длинные линии
Сообщение19.12.2024, 09:41 
Аватара пользователя


22/07/11
867
realeugene в сообщении #1666059 писал(а):
Импеданс - это отношение комплексного напряжения к комплексному току на определённой частоте. По определению.
Именно это у меня и есть. Чем напряжение, которое выдает источник на приведенной схеме недостаточно комплексное? И частота одна...
При численном решении нет нужды записывать в виде $A+Bj$, но суть от этого не меняется.

 Профиль  
                  
 
 Re: Электротехника. Длинные линии
Сообщение19.12.2024, 09:42 
Аватара пользователя


11/12/16
14035
уездный город Н
realeugene в сообщении #1666059 писал(а):
И в чём разница?


Наверное, в том, что в переходных процессах не бывает синусоидальных сигналов :mrgreen:

-- 19.12.2024, 09:46 --

Amw
1. У всех бывает, что находит затмение. Самому регулярно приходится признавать ошибки.
2. Но нельзя же настолько упорно заблуждаться.

Еще раз:
1.Вы можете вводить любые агрегаты, размерностью омы. Но не нужно любой такой агрегат называть "импедансом"! Слово занято. Придумайте другое.
2. В переходных процессах не бывает синусоидальных сигналов.

 Профиль  
                  
 
 Re: Электротехника. Длинные линии
Сообщение19.12.2024, 09:52 
Аватара пользователя


22/07/11
867
EUgeneUS в сообщении #1666062 писал(а):
Наверное, в том, что в переходных процессах не бывает синусоидальных сигналов :mrgreen:
Я ж нарисовал - там на каждом участке отрезки синусоид. Или Вы опять про "без начала и конца"? Тема называется "Электротехника. Длинные линии" Закон Ома для цепей переменного тока... Комплексное сопротивление - импеданс. Комплексная проводимость - адмиттанс.

 Профиль  
                  
 
 Re: Электротехника. Длинные линии
Сообщение19.12.2024, 10:48 


27/08/16
10450
Amw в сообщении #1666064 писал(а):
Я ж нарисовал - там на каждом участке отрезки синусоид.
А что вы знаете про преобразование Фурье участка синусоиды?

 Профиль  
                  
 
 Re: Электротехника. Длинные линии
Сообщение19.12.2024, 11:23 
Аватара пользователя


11/12/16
14035
уездный город Н
Amw в сообщении #1666064 писал(а):
Я ж нарисовал - там на каждом участке отрезки синусоид.


Это не Вы нарисовали, а Ваш эмулятор. И если там что-то похожее на синусоиду, то совсем не означает, что синусоида и есть.
Amw в сообщении #1666064 писал(а):
Тема называется "Электротехника. Длинные линии" Закон Ома для цепей переменного тока... Комплексное сопротивление - импеданс. Комплексная проводимость - адмиттанс.

И какое отношение эти Ваши построения имеют к этой теме? (Никакого)

 Профиль  
                  
 
 Re: Электротехника. Длинные линии
Сообщение19.12.2024, 12:11 
Аватара пользователя


22/07/11
867
EUgeneUS в сообщении #1666089 писал(а):
И если там что-то похожее на синусоиду, то совсем не означает, что синусоида и есть.

Ну Вы даете...
EUgeneUS в сообщении #1666089 писал(а):
И какое отношение эти Ваши построения имеют к этой теме? (Никакого)

Самое прямое - можно численным методом проверить решение задачи ТС. А Ваши придирки какое? :D
Изображение
Красный - напряжение на конце разомкнутой линии (амплитуда 10V), зеленый - ток на расстоянии 1м (3ns) от разомкнутого конца.

 Профиль  
                  
 
 Re: Электротехника. Длинные линии
Сообщение19.12.2024, 12:16 
Аватара пользователя


11/12/16
14035
уездный город Н
Amw в сообщении #1666104 писал(а):
Самое прямое - можно численным методом проверить решение задачи ТС.


Так это опять же не Ваши построения, а построения эмулятора.
А Ваши построения: "поделим действительную функцию $U(t)$ на действительную функцию $I(t)$, получим какую-то "зю от тэ" и, зачем-то назовём это импедансом"

 Профиль  
                  
 
 Re: Электротехника. Длинные линии
Сообщение19.12.2024, 13:44 
Аватара пользователя


22/07/11
867
EUgeneUS в сообщении #1666107 писал(а):
Так это опять же не Ваши построения, а построения эмулятора.
Это уже конкретно детский сад, штаны на лямках. Я пользуюсь теми инструментами, которые у меня есть и не собираюсь сам ваять каменный топор. Спасибо за приятную беседу.

 Профиль  
                  
 
 Re: Электротехника. Длинные линии
Сообщение19.12.2024, 14:07 
Аватара пользователя


11/12/16
14035
уездный город Н
Amw в сообщении #1666121 писал(а):
Спасибо за приятную беседу.


И Вам не хворать.
Не могу назвать приятной беседу, где оппонент несет откровенную отсебятину в части трактовки давно (100 лет как) устоявшейся терминологии. При этом ссылается на какие-то "инструменты"

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 72 ]  На страницу Пред.  1, 2, 3, 4, 5

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group