2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4
 
 Posted automatically
Сообщение09.11.2023, 10:33 
Админ форума


02/02/19
3038
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (Ф)»
Причина переноса: не указана.

 Профиль  
                  
 
 Re: Сила, действующая на точку в ОТО
Сообщение03.02.2024, 21:42 


04/01/10
206
Возвращаясь к теме топикпастера:
alexgol176 в сообщении #1583423 писал(а):

При разговоре об ОТО принято говорить, что "гравитация – не сила", поскольку движение частицы в ОТО описывается при помощи 4-мерного уравнения движения, содержащего коэффициенты аффинной связности, описывающие геометрию пространства-времени. Т. о. для описания движения частицы в ОТО не требуется никаких представлений о 3-мерной силе, действующей на частицу со стороны гравитационного поля.

Ландау и Лифшиц решили представить дело так: с трехмерной точки зрения движение частицы в постоянном гравитационном поле таково, как если бы на неё со стороны этого поля действовала некая сила (подобно тому, как это делается в классической механике в НИСО, когда вводят силы инерции).

Был получен следующий результат:
$\mathbf{f} = \dfrac{mc^2}{\sqrt{1-v^2/c^2}}\left\{-\operatorname{grad}\ln{\sqrt{h}} + \sqrt{h}\left[\tfrac{\mathbf v}{c},\operatorname{rot}\mathbf g\right] \right\}$

В итоге возникло три конкретных вопроса.

1) Насколько справедлив такой результат? Грубо говоря, считают ли специалисты, что данная формула верна или у них есть к ней претензии?

2) Насколько корректно такое трёхмерное представление?

3) В рамках СТО (§10) 3-мерная сила вводится как и в классической механике:
$$
\mathbf f = \dfrac{d\mathbf p}{dt},
$$
где $\mathbf p$ ‒ 3-импульс частицы, а $t$ ‒ время. Переходя собственному времени $d\tau$ или, что то же, к $ds$, авторы пишут:
$$
f^\alpha = c\sqrt{1-\dfrac{v^2}{c^2}}\dfrac{dp^\alpha}{ds},
$$
где $p^\alpha = mcu^\alpha\ (\alpha=1,2,3)$ ‒ пространственные компоненты 4-импульса: $p^\mu = mcu^\mu = mc\tfrac{dx^\mu}{ds}\ (\mu=0,1,2,3)$.

Данную формулу для силы авторы распространяют на ОТО, заменяя обычный дифференциал 3-импульса ковариантным, посчитанным с помощью 3-мерных символов Кристоффеля $\lambda^\alpha_{\beta\gamma}$:
$$
f^\alpha = c\sqrt{1-\dfrac{v^2}{c^2}}\dfrac{Dp^\alpha}{ds}.
$$

Насколько корректно так определять 3-силу в ОТО?

Меня интересует мнение профессиональных физиков-теоретиков. Как бы они ответили на эти три вопроса.

рассмотрим следующий пример:
Два тела с массами m (1) и M (2), m<<M движутся навстречу друг другу со скоростью $v>c/\sqrt{3}$. Для определенности будем считать размеры тел малыми по сравнению с расстоянием между ними и гравитацию слабой. В этом случае они будут тормозить в движении относительно друг друга, см., Блинников С И, Высоцкий М И, Окунь Л Б, УФН 173 1131–1136 (2003) .
Для метрики Шварцшильда радиальная компонента данной силы имеет вид
$\mathbf{f}_r =-\dfrac{mc^2}{\sqrt{1-v^2/c^2}}\tfrac{r_0}{r^2\left(1-\tfrac{r_0}{r}\right)}.$
То есть, в инерциальной системе отсчета К, в некоторый момент неподвижной относительно тела (2), при $r_0=r_0^M$. эта сила, согласно определению в задаче, будет увеличивать радиальный импульс тела (1), несмотря на его торможение. С другой стороны, 2е тело также будет тормозить в инерциальной системе отсчета К', в некоторый момент неподвижной относительно тела (2). Это означает, что в системе отсчета К оно начнет двигаться в направлении движения 1го тела и их суммарный импульс будет возрастать, что нарушает закон сохранения импульса. Этот эффект будет появляться и для силы Окуня, в том числе, в исправленном Paganel виде. Это объясняется тем, что здесь не учитываются энергия и импульс, передаваемые гравитационному полю. но как их учесть, чтобы законы сохранения соблюдались, неизвестно.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 47 ]  На страницу Пред.  1, 2, 3, 4

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group