Код:
\l e:\VAL\math\projects\equidivisible_numbers\PARI\res21\res21tau192_3-0-13-5__II_1
allocatemem(2^28)
m = 554159729309947409007752567806326895200
p1 = 30475766721704852566432501877740394775491
a = 320226
M = [3698, 3971, 12, 49, 50, 5043, 362024, 529, 18, 4805, 28, 4107, 242, 841, 480, 289, 4418, 63, 4, 845, 320226]
u = [1, 2, 3, 4, 5, 6, 8, 9,10,11,12,13,14,16,17,18,19,20];
nu = [3, 3, 3, 4, 3, 3, 8, 9,10,11,12,13,14,16,17,18,19,20];
i1 = 432000000000
i2 = i1+ 100000000000
P=[61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523];
T={[
Set([16, 35, 59]), Set([0, 46, 47]), Set([19, 30, 44]), Set([21, 30, 55]), Set([13, 49, 51]), Set([40, 51, 80]), Set([5, 15, 87]), Set([15, 39, 57]), Set([63, 71, 86]), Set([51, 93, 98]), Set([47, 85, 100]), Set([19, 36, 88]), Set([32, 39, 98]), Set([70, 95, 117]), Set([16, 39, 82]), Set([16, 63, 134]), Set([50, 107, 134]), Set([60, 108, 145]), Set([57, 108, 132]), Set([21, 38, 118]), Set([6, 24, 48]), Set([65, 118, 143]), Set([45, 57, 126]), Set([67, 110, 129]), Set([104, 130, 175]), Set([34, 74, 166]), Set([51, 76, 143]), Set([97, 139, 164]), Set([82, 149, 181]), Set([91, 93, 166]), Set([16, 153, 192]), Set([142, 149, 211]), Set([18, 51, 163]), Set([86, 133, 206]), Set([39, 78, 124]), Set([9, 80, 84]), Set([56, 141, 248]), Set([42, 141, 167]), Set([6, 43, 180]), Set([21, 178, 208]), Set([1, 53, 62]), Set([68, 126, 172]), Set([13, 56, 207]), Set([44, 152, 227]), Set([43, 147, 225]), Set([36, 126, 250]), Set([94, 125, 245]), Set([112, 204, 254]), Set([154, 185, 210]), Set([220, 245, 297]), Set([190, 203, 297]), Set([124, 138, 221]), Set([24, 99, 106]), Set([78, 87, 334]), Set([263, 287, 319]), Set([80, 145, 238]), Set([14, 29, 367]), Set([153, 247, 272]), Set([187, 199, 215]), Set([58, 348, 371]), Set([163, 170, 286]), Set([12, 102, 293]), Set([173, 218, 354]), Set([244, 312, 333]), Set([45, 280, 351]), Set([117, 266, 321]), Set([140, 153, 267]), Set([1, 300, 334]), Set([62, 143, 397]), Set([26, 286, 394]), Set([241, 269, 290]), Set([155, 276, 410]), Set([56, 101, 214]), Set([27, 320, 391]), Set([167, 193, 452]), Set([88, 97, 469]), Set([151, 222, 462]), Set([182, 222, 413]), Set([139, 373, 383]), Set([108, 284, 485]), Set([351, 371, 498]), Set([41, 82, 141])
]}
s=0;t=0;
{for(i=i1,i2,
if(i%5!=4 && i%7!=3 && i%11!=3 && i%13!=6 && i%17!=11 && i%19!=15 && i%23!=17 && i%29!=1 && i%31!=18 && i%37!=19 && i%41!=21 && i%43!=22 && i%47!=3 && i%53!=23 && i%59!=27,
tf=1;for(j=1,82, if(setsearch(T[j],i%P[j]),tf=0;break));if(tf, p=p1+i*m;
if(ispseudoprime(p),n=a*p-20; if(ispseudoprime((n+6)/M[7]) && ispseudoprime((n+14)/M[15]),
tf1=1; for(j=1,18,if(ispseudoprime((n+u[j]-1)/M[u[j]]), tf1=0; break));
if(tf1, s=s+1; tf2=1; for(j=1,18, ng=(n+u[j]-1)/M[u[j]]; g=factor(ng,300000); na=matsize(g)[1];
if(!((na==nu[j] && ispseudoprime(g[na,1])) || (na<nu[j] && !ispseudoprime(g[na,1]))), tf2=0; break));
if(tf2, tf3=1; E=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];ss=0;t=t+1; for(j=1,18,if(numdiv(n+u[j]-1)==48,E[j]=1;ss=ss+1);
if(j>ss+1, if(j>10,printf("%.4g",(i-i1)/(i2-i1)*100.); printf(" ")); break));
if(ss>11, print(); print(n); print("# ",E," ",ss+3);if(ss==18,print(n," YES!!! ");break)))))))));
print(s," ",t)};"res21tau192_3-0-13-5__II_1"