По теории вопрос: кол-во точек спектра равно количеству точек сигнала. Это теорема какая-то есть? Или правило?
Нет такого правила. Число точек сигнала, вообще говоря, не равно числу точек спектра. Можем построить спектр с числом точек, куда большим числа точек в сигнале. Но соседние значения будут высококоррелированы и не нести информации. Можем построить спектр с числом отсчётов существенно меньшим, чем точек в сигнале. Причём это может быть практически полезно (ну, скажем, доктору для контроля глубины наркоза по ЭЭГ нужны лишь суммарные мощности дельта-, тэта-, альфа- и бета-ритмов, 4 точки из возможных 256). Есть вычислительная процедура, БПФ. В ней мы из n входных значений делаем n значений преобразования. Это обеспечивает обратимость преобразования (что не означает, что можно восстановить сигнал по спектру, только возможность обратить ПФ). Причём оно работает с комплексными величинами на входе и выдаёт комплексные на выходе. Если на входе действительные числа, n точек выхода не будут независимыми, половина преобразованных значений - комплексное сопряжённые с другой половиной. Комплексные значения после ПФ соответствуют определённым частотам, их модуль связан с амплитудой соответствующей компоненты, а фаза - со сдвигом компоненты относительно начала отрезка. Поскольку момент начала отсчёта произволен - фаза нас часто не интересует, она зависит от неконтролируемой нами величины (момента времени), и мы ею пренебрегаем (но иногда именно она и важна). И строим "спектр мощности" (об условности термина "мощность" говорилось ранее), квадраты модулей соответствующих компонентов. Достоинство квадратов в аддитивности, Пифагор свидетель. Это искупает проблемы с изменением размерности. А иногда важны относительные значения, и спектр логарифмируется, переводясь в децибелы. В построенном так спектре точек вполовину меньше, чем в исходном отрезке, по которому считали. При этом расчёт по всей доступной продолжительности сигнала, как по одному отрезку, обычно не практикуется. Чаще разбивают его на фрагменты равной длины, выбирая обычно удобную для БПФ. При этом принимается "математическая фикция", что за пределами каждого отрезка сигнал бесконечно повторяет данный отрезок. Как правило, на вход БПФ дают не сам отрезок, а произведение его на окно, обычно спадающее к краям отрезка (если явно на окно не умножают, не значит, что его нет, просто оно "прямоугольное"). Любое окно, в том числе и прямоугольное, искажает спектр, но по-разному. Спадающее к краям (косинусоидальное, гауссианное, треугольное...) избавляет от "дефектов на стыках", но расширяет частотные пики. Рассчитанные по соседним отрезкам спектры усредняют меж собой (хотя есть задачи, когда смотрят на спектры по соседним фрагментам, не смущаясь их неточностью - они, в статистическом смысле, несостоятельны), а также усредняют по соседним значениям (впрочем, эта операция эквивалентна применению окон). Усредняют обычно именно спектр мощности, благодаря её аддитивности, а потом уже могут логарифмировать или извлекать корень. Поскольку обычно применяемые окна берут разные отсчёты с разными весами, популярна техника "с перекрытием", когда отрезки берутся не сдвинутые на всю длину, а, скажем, на 50%, так что точки на краю одного отрезка, и поэтому взятые с малыми весами, оказываются близкими к середине соседнего, и веса у них близки к единице.
Так всеж уточнить хочу по практическому вопросу
1-я точка
N-я точка
N+1-я точка
???
и N+1-я точка это уже повторяющийся спектра начинается?
Ну вот посчитали мы БПФ от, для определённости, 512 точек. Получив 512 комплексных чисел. Но они у нас "зеркальны", в том смысле, что после 256 идут те же с точностью до комплексного сопряжения числа в обратном порядке (в предположении, что исходный сигнал действительный). Так что мы ими пренебрегаем.
здесь частота Найквиста-Котельникова-Шеннона (ой, ещё Уиттекера забыл), равная половине частоты снятия отсчётов. Частоты выше неё не могут быть правильно определены. Они будут трактоваться, как частоты в полосе между нулём и частотой НКШ (в кино, может, замечали иногда, что колесо вращается в "неправильную" сторону? ну так частота вращения колеса оказалась выше половины частоты кадров, и мы видим вращение и с иной частотой, и с иной фазой).
(Оффтоп)
Как-то два вполне грамотных и весьма трудолюбивых аспиранта сделали открытие минимум на Нобелевку. Нашли ритмы ЭЭГ с частотой 22 и 28 Гц, проявлявшиеся исключительно у больных. А потом с грустью догадались - их аппаратура имела частоту дискретизации 128 Гц, что позволяло избавиться от сетевой наводки 50 Гц, НКШ-частота 64 Гц. Но только в аппаратуре есть схема питания, в которой трансформатор, а у его сердечника гистерезис, порождающий нечётные - 150 гц, 250 Гц и т.д. гармоники, а за трансформатором выпрямитель, превращающий переменный 50 Гц в пульсирующий 100 Гц и соответственно гармоники чётные - 100 Гц, 200 гц, 300 Гц и т.п. И они уже за частотой НКШ(У). Порождая комбинационные частоты, "алиасы" А почему только у больных? Здоровых испытуемых они на кафедре писали, в экранированной камере, а больных в палате, среди разных электрических приборов...