2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Классификация системы ОДУ с кубическими возмущениями
Сообщение01.06.2021, 05:13 
Заслуженный участник


22/11/10
1187
Padawan в сообщении #1520627 писал(а):
Поясните, пожалуйста, для тупых, что дают эти равенства (проинтегрированные)?

Можно так.
$$
x \sim \cos t + \lambda v(t), \quad y \sim \sin t + \lambda u(t).
$$
$$
x(2\pi) \sim 1 + \lambda v(2\pi), \quad y(2\pi) \sim \lambda u(2 \pi).
$$
Имеем $x(0) = 1, y(0) = 0$. Значит после интегрирования тех самых равенств
$$
u(2\pi) = u(0) = 0, \quad v(2\pi) = v(0) + \dots.
$$
После чего видно, что там происходит с координатой $x$.

На самом деле можно обойтись только вторым равенством. Положим
$$
J(\lambda) = \int \limits_0^{2\pi}(x^2(t) + y^2(t))\, dt.
$$
Тогда
$$
J'(0) = 2\int \limits_0^{2\pi}(v(t)\cos t + u(t)\sin t)\, dt = \dots
$$
Отсюда видно, как меняется энергия после одного оборота вокруг центра.
А вообще, как уже указал GAA, это т.н. ляпуновские величины. Можно поискать в литературе указания как ими лучше всего воспользоваться.

 Профиль  
                  
 
 Re: Классификация системы ОДУ с кубическими возмущениями
Сообщение02.06.2021, 10:33 
Заслуженный участник


13/12/05
4665
GAA в сообщении #1520693 писал(а):
Следовательно:
если $L_1 <0$, т.е. $a+b <0$, то точка покоя — устойчивый фокус;
если $L_1 >0$, т.е. $a+b >0$, то точка покоя — неустойчивый фокус;
если $L_1 =0$, то требуется рассмотреть $L_2 $ и возможно величины более высокого порядка.

А разве нельзя в третьем пункте сразу сделать вывод, что траектории замкнутые? При непрерывном изменении параметров они же обязаны замкнуться, переходя от закручивающихся траекторий к раскручивающимся.

 Профиль  
                  
 
 Re: Классификация системы ОДУ с кубическими возмущениями
Сообщение02.06.2021, 16:24 
Заслуженный участник


12/07/07
4548
Чтобы точка покоя была центром — все ляпуновские величины должны быть равны нулю.
Из старых книг см, например,
Андронов А.А., Леонтович Е.А., Гордон И.И., Майер А.Г. Качественная теория динамических систем второго порядка. М.: Наука, 1966 (djvu);
Баутин Н.Н, Леонтович Е.А. Методы и приёмы качественного исследования динамических систем на плоскости. (pdf).

[upd] Из этого бесконечного числа величин конечная часть является существенными (остальные равны нулю, если существенные равны нулю), но определение верхней границы числа существенных ляпуновских величин и указание конкретных индексов этих существенных величин — вроде бы является открытой проблемой («проблема центра и фокуса»).[/upd]

-- Wed 02.06.2021 15:28:49 --

Padawan в сообщении #1520866 писал(а):
При непрерывном изменении параметров они же обязаны замкнуться, переходя от закручивающихся траекторий к раскручивающимся.
Не знаю.

-= Добавлено =-

Вот довольно очевидная и неинтересная модификация примера сообщения post1520337.html#p1520337:
$\dot x =\varepsilon x -  y - x^3$, $\dot y = x + \varepsilon y - y^3.$
  • при $\varepsilon > 0$ — неустойчивый фокус;
  • при $\varepsilon < 0$ — устойчивый фокус;
  • при $\varepsilon = 0$ — устойчивый фокус. (Но можно очевидным способом подобрать константы и будет неустойчивый фокус или центр.)
Вложение:
Комментарий к файлу: Фазовые кривые для трёх значений параметра
spiral.PNG
spiral.PNG [ 20.53 Кб | Просмотров: 0 ]


Редактирование: исправлена опечатка ($\dot y = x - \varepsilon y - y^3$ на $\dot y = x + \varepsilon y - y^3$)

 Профиль  
                  
 
 Re: Классификация системы ОДУ с кубическими возмущениями
Сообщение02.06.2021, 22:38 
Заслуженный участник
Аватара пользователя


31/01/14
11478
Hogtown
А вот в примере (я проверил с https://aeb019.hosted.uark.edu/pplane.html, без обоснования)
$$
\left\{\begin{aligned}
&x' = -y +\varepsilon x+ax^3,\\
&y'=\hphantom{-} x-\varepsilon y +b y^3
\end{aligned}\right.
$$
выводы моей первоначальной задачи с $\varepsilon=0$ (устойчивый фокус при $a+b<0$, неустойчивый фокус при $a+b>0$, центр при $a+b=0$) сохраняются при $|\varepsilon|<1$.

 Профиль  
                  
 
 Re: Классификация системы ОДУ с кубическими возмущениями
Сообщение03.06.2021, 23:55 
Заслуженный участник


12/07/07
4548
Выше я привёл очевидный пример, когда устойчивый грубый фокус ($\varepsilon < 0$) становится негрубым устойчивым фокусом ($\varepsilon = 0$), а затем грубым неустойчивым ($\varepsilon > 0$), поскольку считать ничего не надо. (Необходимое уже получено в ветке.)
Вот ещё пример. При $a+b=0$ первая ляпуновская величина в случае
$\dot x = -y +ax^3$, $\dot y = x +by^3 + y^5$
равна нулю, а вторая не равна. При $a+b=0$ начало координат не центр, а фокус.

Red_Herring в сообщении #1520971 писал(а):
А вот в примере (я проверил с https://aeb019.hosted.uark.edu/pplane.html, без обоснования)...
В «канонической форме» система будет иметь вид
$\dot u = - \varepsilon v +a u^3$, $\dot v = \varepsilon u +b v^3.$
Заменой независимой переменной, а затем изменением обозначений параметров $a$ и $b$ система приводится к исходной системе, с $\varepsilon = 0$. Так что системы — качественно эквивалентны, при $|\varepsilon| < 1$.

 Профиль  
                  
 
 Re: Классификация системы ОДУ с кубическими возмущениями
Сообщение04.06.2021, 12:26 
Заслуженный участник
Аватара пользователя


31/01/14
11478
Hogtown
GAA в сообщении #1521121 писал(а):
В «канонической форме» система будет иметь вид

А что такое «каноническая система»? Та, которая получена линейной заменой (и перемасштабированием по $t$)? Тогда, будет
$$
\left\{\begin{aligned}
&x' = -y + a (\cos(\alpha) x-\sin(\alpha)y )^3,\\
&y'=\hphantom{-} x+b (\sin(\alpha) x )+\cos(\alpha)y) ^3
\end{aligned}\right.
$$
т.е. третьи степени запутываются. Конечно, можно попробовать добавить нелинейную замену, и доказать, что можно избавиться также и от высших степеней, оставив лишь два куба

 Профиль  
                  
 
 Re: Классификация системы ОДУ с кубическими возмущениями
Сообщение04.06.2021, 20:24 
Заслуженный участник


12/07/07
4548
GAA в сообщении #1521121 писал(а):
В «канонической форме» система будет иметь вид
$\dot u = - \varepsilon v +a u^3$, $\dot v = \varepsilon u +b v^3.$
Ошибка. Должно быть
$\dot u = - \sqrt {1-\varepsilon^2} v + \ldots, $\dot v = \sqrt{1-\varepsilon^2} u + \ldots.$
Дальше, да, не упрощается: будут кубы линейной комбинации $u$ и $v$.
В лоб считать ляпуновские величины будет утомительно.

-- Fri 04.06.2021 19:32:12 --

Я о линейной замене думал. Просто так не получится.

 Профиль  
                  
 
 Re: Классификация системы ОДУ с кубическими возмущениями
Сообщение04.06.2021, 23:26 
Заслуженный участник


12/07/07
4548
Если не ошибся повторно (завтра проверю), то $$\dot u = -\sqrt{1-\varepsilon^2} v + \frac {(1-\varepsilon^2)^{3/2}au^3 + 3a\varepsilon (1-\varepsilon^2)u^2 + 3a\sqrt{1-\varepsilon^2}\varepsilon^2uv^2 + (a\varepsilon^2-b) \varepsilon v^3} {(1 - \varepsilon^2)^{3/2}},$$$$\dot v = \sqrt{1-\varepsilon^2}u+ \frac b {1-\varepsilon^2} v^3.$$$$L_1 = \frac 3 4 \frac {\pi (a+b)} {(1-\varepsilon^2) \sqrt {1-\varepsilon}}.$$Таким образом, если $a+b \ne 0$, то результаты, как в случае $\varepsilon = 0$. Если $a+b = 0$, то требуется дополнительное исследование.

 Профиль  
                  
 
 Re: Классификация системы ОДУ с кубическими возмущениями
Сообщение05.06.2021, 09:17 
Заслуженный участник
Аватара пользователя


31/01/14
11478
Hogtown
Если $a=-b=-1$ (конкретное положительное значение, очевидно, неважно), то
$$\begin{align}
&\frac{dx}{-y+\varepsilon x-x^3}=\frac{dy}{x-\varepsilon y+y^3}\\
\implies 
&(x-\varepsilon y-y^3)dx +(y-\varepsilon x-x^3)\,dy=0\\
\implies
&\frac{(x-\varepsilon y-y^3)dx +(y-\varepsilon x-x^3)\,dy}{(1+xy)^3}=0\\
\implies
&H(x,y):=\frac{x^2+y^2-\varepsilon}{2(1-xy)^2}=C
\end{align}$$
с тем же интегрирующим фактором, что и при $\varepsilon=0$.

Разумеется, это работает при любом $\varepsilon$, но если мы рассмотрим $H(x,y)-H(0,0)=\dfrac{x^2+y^2-2\varepsilon xy + \varepsilon x^2y^2}{2(1-xy)^2}$, то увидим, что только при $|\varepsilon|<1$ будет невырожденный минимум в $0$, а при $|\varepsilon|>1$ будет невырожденное седло. А вот при $\varepsilon=1$ будет вырожденный минимум, а при $\varepsilon=-1$ вырожденное седло, и действительно, в первом случае у системы ДУ будет центр, а во втором седло (вырожденные).

 Профиль  
                  
 
 Re: Классификация системы ОДУ с кубическими возмущениями
Сообщение17.12.2022, 13:44 
Аватара пользователя


11/11/22
304
Вопрос об устойчивости нуоевого решения системы $$
\left\{\begin{aligned}
y'=&\hphantom{-}x + f(x,y),\\
x'=&-y +g(x,y),
\end{aligned}\right.
$$
где $f,g=O(x^2+y^2)$ -голоморфны в нуле,
решается полностью.
В полярных координатах в окрестности нуля эта система приводится к виду $$\frac{dr}{d\varphi}=\lambda r^m(1+u(r,\varphi)),\quad |u|\le c r,\quad m\in\{2,3,\ldots\},\quad r(0)=r_0>0.$$

1) $\lambda=0$ -совсем неинтересно;

2) Если $\lambda<0$ -асимптотическая устойчивость: $r'<0$;

3) При $\lambda>0$ надо следить за отображением за период $T:r_0\mapsto r(2\pi)$, а его можно получить с любой точностью, раскладывая решение в ряд по степеням $r_0$.
Так $\frac{dT}{dr_0}\Big|_{r_0=0}=1$.

3a) Если $T^{(j)}(0)=0$ при $j=2,\ldots , s$ и $T^{(s+1)}(0)>0$ будет неустойчивость;

3b) если $T^{(s+1)}(0)<0$ то асимпт. устойчивость.

3c) $T^{(j)}(0)=0,\quad j=2,3,\ldots$ -- устойчивость (это значит, что $T\equiv r_0$)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 25 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group