Игошин В.И. Математическая логика и теория алгоритмов
Спасибо, скачал. И задачник заодно.
Определение предложения:
Я понял. Речь идёт об исчислении высказываний. Но то, что Вы процитировали — это не определение. Это апелляция к интуитивному пониманию. А до определения Вы не дочитали, оно на странице 24. Причём, оно ориентировано именно на исчисление высказываний (фактически в каждой формальной теории имеется своё определение). И оно именно такое, как я говорил, то есть, чисто синтаксическое, не апеллирующее ни к какой истинности или ложности. Для того, чтобы можно было говорить об истинности высказывания, нужна интерпретация. Для исчисления высказываний такая интерпретация (в двухэлементной булевой алгебре) задаётся функцией истинности. У Игошина об этом речь идёт на странице 16. Поскольку он в качестве примера берёт атомарные высказывания из естественного языка, получается некоторая естественная интерпретация. В случае формальной теории с этим несколько сложнее. В любом случае, прежде чем можно будет говорить об интерпретации, теория должна быть полностью определена.
Вот аксиоматизация уже имеющейся математической теории, как я ее понимаю.
Да, при разработке новой формальной или неформальной теории, как правило, имеют в виду определённую интерпретацию. Потому что просто сочинять что попало совершенно не интересно.
Ну так все-таки читали.
Естественно. А как ещё получить упорядоченную информацию? Я очень много почерпнул информации о математической логике и теории множеств из обсуждения разных вопросов с другими студентами и аспирантами, но этого недостаточно.
Пусть даже для подтверждения уже имеющихся убеждений.
Нет. Для систематического ознакомления с вопросом.
Но если бы вы встретили в тех книгах что-то расходящееся с уже имеющимися у вас представлениями, вы бы свои взгляды начали пересматривать (я не говорю, что вы бы их обязательно изменили, но пересмотрели бы - это точно).
Да. Если в разговоре с кем-то или при изучении литературы я обнаруживал, что что-то понимаю неправильно, я немедленно вносил коррекцию в свои знания.
Я говорил, что если в математике найдется такая модель (непротиворечивая, хотя и не уверен в удачности использования этого термина), у физиков появится очень большой соблазн изучить в первую очередь эту модель, а не ставить опыты.
Как было бы хорошо, если бы Вы перестали говорить о том, чего не знаете. Каким образом без опытов можно узнать, что какая-то математическая теория хорошо описывает некую область физических явлений? Даже если предположить, что такая теория действительно существует. Математическая теория является абстрактной, поскольку её объектами являются не какие-то реальные вещи, а логические конструкции, существующие только в человеческой психике. Каким образом без опытов с реальными объектами узнать, что их свойства похожи на свойства логических конструкций?
Что бред? Что орбита-это геодезическая в четырехмерном пространстве?
Разумеется. Например, орбита Земли в Солнечной системе — это никакая не геодезическая в четырёхмерном пространстве. Это, в первом приближении, эллипс в трёхмерном пространстве. А в четырёхмерном пространстве-времени (а не в пространстве) имеется мировая линия. Вот она — также в первом приближении — является геодезической (но это первое приближение очень хорошее, хотя и не абсолютно точное).
Но вот эта мысль, что Эйнштейн вот заменил аксиому постулат о силе тяготения и получил новую, более совершенную теорию, потому что он использовал для этого на один постулат меньше, там сформулирована.
Нет, это ерунда. Не надо слишком серьёзно относиться к научно-популярной литературе. Там пытаются что-то объяснять неспециалистам "на пальцах", и часто получается какая-нибудь ерунда. Если хотите действительно разобраться в физической или математической теории, её надо серьёзно изучать. Если хотите просто ознакомится на популярном уровне, покопайтесь в теме "
Ищу литературу по…", какую там физики рекомендуют научно-популярную литературу.
Скажите, а вот после прочтения рекомендованных мне книг вопросов вообще не остается? Неужели там дано идеальное построение матлогики?
Я не знаю, что такое "идеальное построение". Если Вы, допустим, разберётесь в книге Клини (а это не просто, поскольку она рассчитана вовсе не на школьников), то Вы будете понимать, что такое математическая логика и как она работает. "Справочная книга по математической логике" — это вообще не учебник, а сборник обзоров по различным вопросам математической логики и теории множеств (в четырёх томах). Попробуйте читать Игошина, только не спешите и не путайте предварительные разъяснения и аналогии с определениями и теоремами.
Советую также почитать книгу Рэймонда М. Смаллиана "Как же называется эта книга?" Там куча логических задачек, решая которые, можно незаметно для себя доказать теорему Гёделя о неполноте. Никакого формализма нет, но можно познакомиться с весьма серьёзными вещами.