Для каких уравнений в 7-м классе определяется понятие корня?
Определения даются в самом начале темы "Уравнения", никаких конкретных типов уравнений, к которым они должны применяться не указывается. А так понятно, что для линейных и квадратных уравнений, в основном решаемых в этих классах, можно и вообще ничего не говорить о допустимых значениях переменной.
Нет, все определения верны, первое - для уравнений из программы 7-го класса, второе - из общего школьного курса математики.
Мне кажется, тогда это существенный недочёт учебников, в том числе и вузовских. Скажем, когда говорят, что у квадратного уравнения с отрицательным дискриминантом нет корней, обычно указывается, что имеются в виду только действительные корни, да и все помнят об этом. И при переходе к комплексным числам никакого противоречия не возникает. А здесь новое определение фактически отменяет старое.
Да не разделяются мнения. Просто разным людям комфортнее определять степень немного по-разному. Если они готовы каждый раз, когда возникает опасность различного понимания одной и той же записи разными людьми, специально оговаривать, что они имеют в виду, то всё нормально.
Но ведь это нигде как раз и не оговаривается(из известных мне учебников и пособий). Об этом и речь.
Удовлетворит вас такой ответ: та формулировка задачи, которую Вы дали, заведомо неточна и имеет разные толкования. То есть это некорректная формулировка, и нет смысла говорить о том, какой у этой задачи правильный ответ. Корректная формулировка может быть такой:...
Да, в общем удовлетворит. Я собственно и выяснил главное - такая формулировка некорректна.
Если же задача дана ученику, то формулировка
Цитата:
решить уравнение
может пониматься как сокращённая запись одной из этих двух корректных формулировок, или даже ещё каким-нибудь способом. Как именно её надо понимать - пусть ученик смотрит учебник.
А вот это не получится. Я пока не видел учебника, где этот вопрос хоть как-то содержательно бы обсуждался.
Практически все школьники привыкли, что задача "Решить уравнение:..." всегда совершенно однозначная, и не подозревают о существовании таких различных трактовок.