2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 13, 14, 15, 16, 17, 18, 19 ... 27  След.
 
 
Сообщение18.10.2007, 01:02 


10/03/07
59
Казань
To Arqady.
По поводу Wow. Открою небольшой секрет. Сведения о Вас я почерпнул из статейки Л. Радзивилловского о «монгольском неравенстве» в сборнике «Математическое просвещение» за который-то год, который оказался на моем компьютере. Он там с восхищением вспоминает урок по неравенствам, который Вы давали в этой школе. Похоже, что с тех пор он сильно увлекся этой темой.
Я сразу подумал – два знатока в одном месте – не слишком ли жирно для Тель-Авива? Собирался спросить, не имеете ли Вы отношения к М.Розенбергу? Но тут как раз Вы распсевдовались.
EV скачал.

 Профиль  
                  
 
 
Сообщение18.10.2007, 08:07 
Заслуженный участник


26/06/07
1929
Tel-aviv
Скорцонер
Кстати, известно ли вам, что монгольское неравенство для пяти переменных верно для всех положительных переменных? :wink:
Это впервые доказал ( и очень красиво! ) Российский математик.

 Профиль  
                  
 
 
Сообщение19.10.2007, 03:32 


10/03/07
59
Казань
Попробую разобраться.

 Профиль  
                  
 
 
Сообщение06.01.2008, 00:26 
Заслуженный участник


26/06/07
1929
Tel-aviv
Артамонов Ю.Н. писал(а):
Argady.
Хочется посмотреть решение вашего неравенства. Вроде больше желающих порешать нет.

Вот оно:
После гомогенизации получаем
$$\sum_{cyc}\frac{a}{b^2+5}\geq\frac{1}{2}\Leftrightarrow\sum_{cyc}(70a^6+330a^5b+60a^5c+15a^4b^2-39a^4c^2-274a^3b^3+480a^4bc-210a^3b^2c+6a^3c^2b-438a^2b^2c^2)\geq0\Leftrightarrow$$
$$\Leftrightarrow18\sum_{cyc}(4a^2-b^2-2ac-bc)^2ab+18\sum_{cyc}(a^6+3a^4b^2-4a^3b^3)+\sum_{cyc}(a-b)^2(26a^4+94a^3b+19a^2b^2+94ab^3+26b^4)+6abc\sum_{cyc}(122a^3-14a^2b-23ab^2-85abc)\geq0.$$
К сожалению, ничего красивого найти не удалось.

 Профиль  
                  
 
 
Сообщение07.01.2008, 09:57 
Заслуженный участник


03/12/07
373
Україна
Наибольшее $\lambda$, для которого неравенство $\frac{a}{{b^2  + \lambda }} + \frac{b}{{c^2  + \lambda }} + \frac{c}{{a^2  + \lambda }} \ge \frac{3}{{1 + \lambda }}$ выполняется для всех неотрицательных $a,b,c$, удовлетворяющих условию $a + b + c = 3$, равно $3 + 2\sqrt 3 $. Равенство достигается на наборах $\left( {1,1,1} \right)$ и $\left( {0,\sqrt 3 ,3 - \sqrt 3 } \right)$

 Профиль  
                  
 
 
Сообщение08.01.2008, 08:18 
Заслуженный участник


26/06/07
1929
Tel-aviv
Edward_Tur
Вот здесь это было упомянуто тоже:
http://www.artofproblemsolving.com/Foru ... hp?t=71764
У Вас имеется красивое доказательство? Спасибо!

 Профиль  
                  
 
 
Сообщение31.01.2008, 20:27 


03/02/07
254
Киев
Про натуральное $n>1$ и простое $p$ известно, что $p-1$ делится на $n$, а $n^3-1$ на $p$. Доказать, что $\sqrt{4p-3}$ натуральное.

Добавлено спустя 26 минут 23 секунды:

Доказать, что существует бесконечно много таких пар целых чисел $a$ и $b$, для которых $a^{2006}+1$делится на $b$, а $b^{2006}+1$делится на $a$.

 Профиль  
                  
 
 
Сообщение01.02.2008, 01:02 


17/01/08
110
Понятно, что n-1 не делится на p, значит, $n^2+n+1$ делится на p, тогда $n^2+n+1 = pk = (p-1)k + k$, откуда получаем k-1 делится на n. Если k не равно 1, то $k \geqslant n+1$ и также ясно, что $p \geqslant n+1$, а тогда $n^2+n+1 \geqslant (n+1)^2$, что неверно. Т.о., k=1 и $n^2+n+1-p = 0$. Дискриминант этого квадратного уравнения должен быть квадратом целого, а он равен 4p-3.

Добавлено спустя 1 час 28 минут 7 секунд:

Существует бесконечно много b, таких что $3b^2 = t^2 + 1$ (уравнение Пелля). Для такого b найдется целое a, такое что $a^2 + b^2 + 1 = 4ab$ (a = 2b+t). a, b - искомые.

 Профиль  
                  
 
 
Сообщение04.02.2008, 14:13 


03/02/07
254
Киев
Пусть $p>3$ простое число. Доказать, что число $(p-1)^p +1$ имеет простой делитель не равный $p$.

 Профиль  
                  
 
 
Сообщение04.02.2008, 15:42 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
То есть что оно не степень $p$. Это частный случай от частного случая гипотезы Каталана, что две степени вообще никогда не бывают соседними числами (кроме 8 и 9), но я не помню, доказана ли она.

 Профиль  
                  
 
 
Сообщение04.02.2008, 15:53 
Заслуженный участник


09/02/06
4401
Москва
Здесь это очевидно, поскольку $p^p>(p-1)^p>p^{p-1}$ при р>2.

 Профиль  
                  
 
 
Сообщение06.02.2008, 20:53 


03/02/07
254
Киев
Даны непостоянные многочлены $P(x),Q(x)$ со старшими коэффициентами равными 1. Доказать, что сумма квадратов коэффициентов многочлена $P(x)Q(x)$ не меньше суммы квадратов свободных членов $P(x)$ и $Q(x)$.

 Профиль  
                  
 
 
Сообщение09.02.2008, 19:38 


03/02/07
254
Киев
1)Построить функцию $f: N\to N$, такую что $f(f(n))=2008n^{2007}$
2) $ABC$ - равнобедренный треугольник($AC=BC$). Внутри треугольника взята такая точка $P$, что углы $PAB$и $PBC$ равны между собой. Пусть $M$ - середина $AB$. Доказать, что сумма углов $APM$ и $BPC$ равна $180$

 Профиль  
                  
 
 
Сообщение10.02.2008, 15:46 


17/01/08
110
2) Пусть N - точка пересечения описанной окружности треугольника BPM с прямой CB (не умаляя общности, N лежит на отрезке BC, иначе рассмотрим AC вместо BC). Тогда $\hat{PNB} = \hat{PMA}$, и треугольник APM подобен треугольнику BPN. Пусть D - точка на прямой BC такая что N - середина BD. Тогда треугольник APB подобен треугольнику BPD, следовательно, $\hat{PDB} = \hat{PBA} = \hat{PAC}$, отсюда D - точка пересечения описанной окружности треугольника PAC с прямой BC. Рассмотрим случай, когда D лежит на отрезке BC. В этом случае $\hat{PCD} = \hat{PAD}$, тогда $\pi - \hat{BPC}$ = $\hat{PCD} + \hat{PBC}$ = $\hat{PAD} + \hat{PAB}$ = $\hat{DAB}$ = $\hat{NMB}$ = $\hat{BPN}$ = $\hat{APM}$.

Случай, когда D не лежит на отрезке BC рассматривается аналогично. Перебора можно избежать, если рассматривать направленные углы между прямыми.

 Профиль  
                  
 
 
Сообщение10.02.2008, 17:40 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
Trius писал(а):
1)Построить функцию $f: N\to N$, такую что $f(f(n))=2008n^{2007}$


Такие функции, безусловно, существуют, причём их целый континуум. Вас что интересует: доказательство того факта, что они существуют, или ответ в виде какой-то красивой формулы?

Насчёт формулы не знаю, но доказательство существования очень простое.

Пусть $g(x) = 2008x^{2007}$ и для натуральных $n,x$ пусть $g^{(n)}(x)$ --- это результат применения функции $g$ к иксу $n$ раз (то есть $g^{(0)}(x) = x$, $g^{(1)}(x) = g(x)$, $g^{(2)}(x) = g(g(x))$, $g^{(3)}(x) = g(g(g(x)))$ и т. д. Скажим, что натуральные числа $x$ и $y$ связаны отношением $R$, если существует $n \in \mathbb{N}$, такое что либо $g^{(n)}(x) = y$, либо $g^{(n)}(y) = x$.

Легко проверить, что введённое таким образом отношение $R$ является отношением эквивалентности. Фактор-множество $\mathbb{N}/R$ (то есть множество классов эквивалентности) счётно: оно содержит один одноэлементный класс $[0]$, а любой другой класс эквивалентности также счётен.

Занумеруем $\mathbb{N}/R$ так, чтобы оно разбивалось на пары. Другими словами, пусть

$$
\mathbb{N}/R = \{ [0], a_0, b_0, a_1, b_1, a_2, b_2, \ldots \}
$$

Для каждого $i \in \mathbb{N}$ пусть $a_i^0, a_i^1, \ldots$ и $b_i^0, b_i^1, \ldots$ --- все элементы классов $a_i$ и $b_i$ соответственно, перечисленные в порядке возрастания.

Полагаем $f(0) = 0$, $f(a_i^j) = b_i^j$ и $f(b_i^j) = a_i^{j+1}$.

Легко проверить, что так определённая функция $f$ удовлетворяет требуемым в задаче свойствам. Кроме того, легко доказат, что любая функция, являющаяся ответом к задаче, является функцией, построенной таким образом (для подходящего разбиения множества $\mathbb{N}/R$ на пары). Таким образом, описаны все решения задачи и показано, что их ровно континуум.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 401 ]  На страницу Пред.  1 ... 13, 14, 15, 16, 17, 18, 19 ... 27  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group