Добрый день!
Меня немного мучает один вопрос, если верен более сильный вариант парадокса Банаха — Тарского, что "Любые два ограниченных подмножества евклидова пространства с непустой внутренностью являются равносоставленными", и при этом

есть ограниченное подмножество евклидова пространства в виде куба, то из этого следует, что

?
Понимаю, что тонкость здесь скорее всего в том, что

по каким-то причинам не будет считаться ограниченным подмножеством евклидова пространства, но хотелось бы понять, по каким именно причинам?
Буду благодарен за разъяснения.
ps Если для вас это очевидно - сильно не бейте, я на форуме человек новый, да и математических факультетов не кончал. Простите уж великодушно ущербного
pps возхохотамше под лавкою впервые зайдя на форум и увидев аж отдельный раздел для доказательств теоремы Ферма
