2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5 ... 8  След.
 
 Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 14:38 
Аватара пользователя


15/09/14

335
Борисоглебск Воронежской обл
Вывод преобразований Лоренца начинается следующим образом.
Имеется две системы: система $K$, для которой расстояние есть $x$, а время есть $t$; система $K'$, для которой расстояние есть $x'$, а время есть $t'$. Скорость света согласно Эйнштейну постоянна во всех системах. Следовательно, если в системе $K$ $x=ct$, то в системе $K'$ $x'=ct'$. Откуда: $x-ct=0$; $x'-ct'=0$
Это значит, что справедливо общее соотношение
$x'-ct'=m(x-ct)$,
где $m$ – некоторая постоянная.
Для света, который движется в обратном направлении, справедливо следующее: если в системе $K$ $x=-ct$, то в системе $K'$ $x'=-ct'$. Откуда: $x+ct=0$; $x'+ct'=0$. Это значит, что справедливо общее соотношение
$x'+ct'=p(x+ct)$,
где $p$ – некоторая постоянная.
Однако в этом месте математики обычно заявляют:
1.Если в уравнение $x'-ct'=m(x-ct)$ подставить $x=-ct$, то мы не приходим к равенству $x'=-ct'$. Следовательно, это уравнение ошибочно.
2.Если в уравнение $x'+ct'=p(x+ct)$ подставить $x=ct$, то мы не приходим к равенству $x'=ct'$. Следовательно, это уравнение ошибочно.
Что можно возразить этим математикам?

 Профиль  
                  
 
 Re: Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 14:56 


06/12/14

154
А где вывод преобразований?

 Профиль  
                  
 
 Re: Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 14:58 
Аватара пользователя


15/09/14

335
Борисоглебск Воронежской обл
Hyper_Tor в сообщении #942956 писал(а):
А где вывод преобразований?

С этого начинается вывод преобразований Лоренца - и в этом месте у математиков возникают указанные вопросы

 Профиль  
                  
 
 Re: Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 15:04 
Заслуженный участник


02/08/11
7003
IGOR1 в сообщении #942946 писал(а):
Что можно возразить этим математикам?
А нужно? То, что вы написали, на вывод преобразований не похоже. Начать хотя бы с того, что вы не написали, что такое у вас $x$, $t$, $x'$, $t'$.

 Профиль  
                  
 
 Re: Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 15:10 
Аватара пользователя


15/09/14

335
Борисоглебск Воронежской обл
warlock66613 в сообщении #942960 писал(а):
Начать хотя бы с того, что вы не написали, что такое у вас $x$, $t$, $x'$, $t'$.

Это написано в самом начале. Этот вывод не принадлежит мне - он взят мной на авторитетном сайте в интернете.

 Профиль  
                  
 
 Re: Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 15:11 
Заслуженный участник
Аватара пользователя


06/10/08
6422
У меня вопросы возникают раньше, вот тут:
IGOR1 в сообщении #942946 писал(а):
Это значит, что справедливо общее соотношение
$x'-ct'=m(x-ct)$,
где $m$ – некоторая постоянная.
Почему $m$ - постоянная?

 Профиль  
                  
 
 Re: Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 15:13 
Аватара пользователя


15/09/14

335
Борисоглебск Воронежской обл
Xaositect в сообщении #942962 писал(а):
Почему $m$ - постоянная?

Так сказано на этом сайте в интернете - все приведенные формулы оттуда.

 Профиль  
                  
 
 Re: Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 15:20 


17/01/12
445
Вывод преобразований Лоренца смотрите лучше тут: 18 стр., Бредов М.М., Румянцев В.В., Топтыгин И.Н. - Классическая электродинамика

 Профиль  
                  
 
 Re: Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 15:31 
Заслуженный участник
Аватара пользователя


06/10/08
6422
Я, похоже, понял. $m$ постоянная, потому что преобразования предполагаются линейными.

IGOR1 в сообщении #942946 писал(а):
Однако в этом месте математики обычно заявляют:
1.Если в уравнение $x'-ct'=m(x-ct)$ подставить $x=-ct$, то мы не приходим к равенству $x'=-ct'$. Следовательно, это уравнение ошибочно.
2.Если в уравнение $x'+ct'=p(x+ct)$ подставить $x=ct$, то мы не приходим к равенству $x'=ct'$. Следовательно, это уравнение ошибочно.
Что можно возразить этим математикам?
Это какие-то странные математики. Преобразования должны удовлетворять обоим условиям $x' - ct' \sim x - ct$, $x' + ct' \sim x + ct$ одновременно, эти два условия независимы, естественно, что они друг из друга не следуют.

 Профиль  
                  
 
 Re: Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 15:34 
Заслуженный участник


20/07/09
4026
МФТИ ФУПМ

(Оффтоп)

IGOR1 в сообщении #942946 писал(а):
Вывод преобразований Лоренца начинается следующим образом.
Восхитительный идиотизм.
IGOR1 в сообщении #942961 писал(а):
Этот вывод не принадлежит мне - он взят мной на авторитетном сайте в интернете.
Ага. "Авторитетный сайт" — полнейшее отсутствие мозгов.
IGOR1 в сообщении #942964 писал(а):
Так сказано на этом сайте в интернете - все приведенные формулы оттуда.
Это не смешно, это противно.

И сразу набегают советчики — как же исправить преобразования Лоренца, как же помочь ТС, когда его закрывать надо, а не помогать, как же найти ошибку…

 Профиль  
                  
 
 Re: Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 15:38 
Аватара пользователя


15/09/14

335
Борисоглебск Воронежской обл
Xaositect в сообщении #942972 писал(а):
Преобразования должны удовлетворять обоим условиям $x' - ct' \sim x - ct$, $x' + ct' \sim x + ct$ одновременно, эти два условия независимы, естественно, что они друг из друга не следуют.

Математики могут возразить: тогда, очевидно, обоим условиям должно удовлетворять одно уравнение а не два, так как два противоречат друг другу.

 Профиль  
                  
 
 Re: Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 15:39 
Заслуженный участник
Аватара пользователя


06/10/08
6422
IGOR1 в сообщении #942964 писал(а):
Так сказано на этом сайте в интернете - все приведенные формулы оттуда.
Мало ли, что на заборе сайте написано, своей головой тоже надо думать.

В общем, ищутся линейные преобразования $\begin{pmatrix} x'\\  t' \end{pmatrix} = A \begin{pmatrix} x\\  t \end{pmatrix}$, которые должны удовлетворять условиям $x - ct = 0\Rightarrow x' - ct' = 0$ и $x + ct = 0\Rightarrow x' + ct' = 0$. Это значит, что мы легко можем записать $A$ в базисе $\begin{pmatrix} 1\\ c \end{pmatrix}$, $\begin{pmatrix} 1\\ -c \end{pmatrix}$ и перейти к исходному базису.

По-моему, все хорошо.

-- Вт дек 09, 2014 15:42:02 --

IGOR1 в сообщении #942977 писал(а):
Математики могут возразить: тогда, очевидно, обоим условиям должно удовлетворять одно уравнение а не два, так как два противоречат друг другу.
Этим "математикам" надо в этом случае идти учить линейную алгебру первого курса. Условия $x' - ct' = m(x - ct)$, $x' + ct' = p(x + ct)$ не противоречат друг другу.

 Профиль  
                  
 
 Re: Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 15:46 
Аватара пользователя


15/09/14

335
Борисоглебск Воронежской обл
Xaositect в сообщении #942979 писал(а):
По-моему, все хорошо.

Математики: это хорошо для одного условия, а для двух получается противоречие. Следовательно, эти два условия надо свести в одно уравнение а не в два

 Профиль  
                  
 
 Re: Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 15:51 
Заслуженный участник


02/08/11
7003
IGOR1 в сообщении #942961 писал(а):
Это написано в самом начале.
Нет, не написано.
IGOR1 в сообщении #942946 писал(а):
расстояние есть $x$, а время есть $t$
Расстояние между чем и чем, время чего?

 Профиль  
                  
 
 Re: Несложный анализ вывода преобразований Лоренца
Сообщение09.12.2014, 15:52 
Заслуженный участник
Аватара пользователя


06/10/08
6422
IGOR1 в сообщении #942981 писал(а):
Математики: это хорошо для одного условия, а для двух получается противоречие. Следовательно, эти два условия надо свести в одно уравнение а не в два
Я использовал оба условия, они эквивалентны заданию двух собственных векторов матрицы $A$.

Поэтому перестаньте называть людей, которые не знают элементарной линейной алгебры, математиками. Если они считают, что где-то противоречие, то пусть покажут противоречие. Из $x' - ct' \sim x - ct$ не следует $x' + ct' \sim x + ct$, и наоборот тоже не следует. При этом эти условия не противоречат друг другу и могут выполняться одновременно, абсолютно так же, как условия $x + y = 1$ и $x - y = 2$ не противоречат друг другу. У нас две координаты, значит, можно задать два независимых условия.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 113 ]  На страницу 1, 2, 3, 4, 5 ... 8  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group