2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5 ... 9  След.
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение17.09.2014, 17:10 
Аватара пользователя
joke-100 в сообщении #908799 писал(а):
Поясняю специально для слоу
 !  joke-100, замечание за личные выпады.

 
 
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение17.09.2014, 21:38 
Аватара пользователя
Aritaborian в сообщении #908815 писал(а):
Поясняю специально для слоу
 !  Aritaborian, аналогичное замечание. Для симметрии.

 
 
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение17.09.2014, 23:52 
Аватара пользователя
Есть довольно интересная книга Н. А. Вавилова "не совсем наивная теория множеств"; черновик есть в сети, сама книга вроде как не издана.

Там объясняется, что у самого Кантора никаких парадоксов не было (в частности, указанный объект по его определению множеством не был), а их позднее придумали горе-переводчики с немецкого. Рекомендую.

-- Ср, 17 сен 2014 13:56:01 --

Nemiroff в сообщении #908837 писал(а):
Ага: не каждая явно определяемая совокупность элементов является множеством. Обалденно очевидно.


Это не является явно определяемой совокупностью. Если бы вдруг даже являлось, то все равно бы не являлось.

 
 
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение18.09.2014, 00:46 
g______d в сообщении #909011 писал(а):
Это не является явно определяемой совокупностью. Если бы вдруг даже являлось, то все равно бы не являлось.
Загадочно. Непонятно. Много повторений "являться" в разных формах.
Короче так, вот тут формулка $\{x : P(x)\}$, вот "пэ от икс" мы можем "явно определить", а формулка всё равно даст не множество, а какую-то гадость. Собс-но, если это кому с рождения очевидно, так оно пусть того туда так и будет. А нет, так и нет, и что уж тут.

 
 
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение18.09.2014, 01:46 
Аватара пользователя
Да, я не прав. Совокупностью является, множеством нет.

Но утверждается, тем не менее, что Кантор не утверждал, что любая совокупность $\{x\colon P(x)\}$ является множеством. Вавилов пишет, что эту аксиому ввел Фреге, а Рассел понял, что она приводит к противоречию.

Сам же Кантор все эти парадоксы знал и множества от совокупностей отличал.

 
 
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение18.09.2014, 09:54 
а несколько совокупностей не являющихся множествами могут быть множеством?

 
 
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение18.09.2014, 10:01 
Аватара пользователя
upgrade в сообщении #909078 писал(а):
а несколько совокупностей не являющихся множествами могут быть множеством?


Обычно элементы множеств сами являются множествами.

 
 
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение18.09.2014, 10:06 
Аватара пользователя
Эти "совокупности" в современной теории множеств называются классами. В теории GB, где основным объектом являются классы, множества определяются как классы, которые являются элементами каких-нибудь классов. Поэтому класс, не являющийся множеством, по определению не является элементом другого класса. В теории ZFC, где основным объектом являются множества, классов вообще нет, но возможно консервативное расширение языка конструкцией $\{x:\Phi(x)\}$, которая рассматривается как определение класса. Естественно, здесь тоже класс, не являющийся множеством, не может быть элементом какого-либо класса просто по определению: значением переменной в ZFC может быть только множество.

 
 
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение18.09.2014, 10:09 
вообще до прочтения этой темы я был полностью уверен, что множество - это все что угодно, чему можно присвоить какое-нибудь название.
например присвоили термин "совокупность" чему-то, оно стало автоматически множеством.

 
 
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение18.09.2014, 13:17 

(upgrade)

upgrade в сообщении #909081 писал(а):
вообще до прочтения этой темы я был полностью уверен, что множество - это все что угодно, чему можно присвоить какое-нибудь название.
например присвоили термин "совокупность" чему-то, оно стало автоматически множеством.
да-да, когда-то и у меня был такой разрыв шаблона :-)

 
 
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение18.09.2014, 22:17 
Аватара пользователя
Попробую ответить на исходный вопрос со своей точки зрения. Прошу прощения, если кому-то покажется, что я "ломлюсь в открытые ворота". Вопрос и впрямь не очень сложен, но нередко и простые вещи осознаются не мгновенно.
Итак, в чём парадоксальность утверждения?
В том, что очень просто и, на первый взгляд, ясно описанная совокупность объектов не образует множество. Хотя основной способ задания множеств - это именно описание общих свойств его элементов.
В принципе есть два способа задать множество:
1. Перечислить все его элементы.
2. Указать общее свойство элементов множества (то, которое присуще им и только им).
Очевидно, первый способ принципиально годится лишь для конечных множеств, а практически - к тому же не слишком большого объёма. Для конечных множеств, содержащих большое число элементов, этот способ неэффективен. А для бесконечных множеств - вовсе непригоден.
Поэтому единственным универсальным способом задания любого множества является способ №2 (описательный).
Но тогда естественно ожидать, что всякое чётко сформулированное (по крайней мере, с точки зрения нашей интуиции) свойство для некоторого класса объектов выделяет из этого класса некоторое множество.
Оказывается, однако, что это совсем не так.
Свойство "не быть собственным элементом" формулируется весьма просто и на интуитивном уровне совершенно ясно. Естественно ожидать, что совокупность множеств, не являющихся собственными элементами, - тоже множество (коль скоро эта совокупность столь просто и ясно описана). Но именно это предположение и ведёт к противоречию, известному, как парадокс Рассела.
По-моему, так.
Ещё раз прошу прощения, если сказанное мною чересчур банально.

 
 
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение18.09.2014, 23:33 
Mihr в сообщении #909305 писал(а):
В принципе есть два способа задать множество:
1. Перечислить все его элементы.
2. Указать общее свойство элементов множества (то, которое присуще им и только им).
Если поразмышлять ещё, становится видно, что 1 входит в 2 — а именно, $x\in\{a_1,\ldots,a_n\}\Leftrightarrow x=a_1\vee\ldots\vee x=a_n$, т. е. у каждого множества, заданного перечислением элементов, всегда есть довольно понятное «общее свойство» элементов. Поэтому 2 — не только единственный универсальный способ, но и вообще единственный способ, если избавляться от лишних сущностей. В аксиоматических теориях множеств обычно записи вида $\{\ldots\}$ вводятся определениями.

 
 
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение18.09.2014, 23:39 
Аватара пользователя
Mihr в сообщении #909305 писал(а):
2. Указать общее свойство элементов множества (то, которое присуще им и только им).


Это какая-то философия. В математике единственный формальный способ задания множеств — это получить его из множества натуральных чисел с помощью действий, разрешенных $\mathbf{ZFC}$. Существование натуральных чисел — одна из аксиом $\mathbf{ZFC}$, поэтому даже фраза "из множества натуральных чисел", строго говоря, лишняя.

На практике, правда, "указание общего свойства" часто работает; но сначала надо построить достаточно большое "универсальное" множество, из которого потом элементы можно выделять по свойству (свойство — это предикат; возможность выделения по предикату — разрешенная операция тоже по одной из аксиом).

 
 
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение18.09.2014, 23:41 
Аватара пользователя
arseniiv в сообщении #909322 писал(а):
всегда есть довольно понятное «общее свойство» элементов.
Простите, не понял. Пусть $A=\{1, \sqrt 2, e^\pi\}$. Что общего у элементов этого множества, кроме того, что все они — действительные числа?

 
 
 
 Re: В чем заключается парадоксальность парадокса Рассела?
Сообщение18.09.2014, 23:42 
Аватара пользователя
Aritaborian в сообщении #909325 писал(а):
Что общего у элементов этого множества, кроме того, что все они — действительные числа?


То, что элемент этого множества является либо $1$, либо $\sqrt{2}$, либо $e^{\pi}$. Такое вот свойство.

 
 
 [ Сообщений: 132 ]  На страницу Пред.  1, 2, 3, 4, 5 ... 9  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group