Росток голоморфного отображения - понятие, используемое, когда требуется сказать о локальных свойствах голоморфной функции. Как было уже сказано, если в пересечении некоторых окрестностей [в области определения] точки

голоморфные функции совпадают, то в каждой из окрестностей это одна и та же функция. Так что большого смысла, кроме как подчеркнуть, что рассматриваются только локальные свойства, у этого термина в случае аналитических функций нет. Для понимания можно опускать слово росток, считая, что речь идет о функции, голоморфной в малой окрестности указанной точки.
Другое дело, например: рассмотрим росток непрерывной функции

в точке 0.Это может быть любая функция, равная

на сколь угодно малой окрестности нуля, а вне нее как-то продолжающаяся по непрерывности на область своего определения, как далеко - не важно. Таких функций, понятно, очень много, но этот факт, опять же, не влияет на локальные свойства каждой из них. Примерно так.