Может это ещё поможет. Вот примерный список того что уже читал (не обязательно полностью, наоборот - зачастую лишь частично). По порядку во времени:
Виленкин Н.Я., Шварцбурд С.И. - Математический анализ. IX—Xкл
Александров А.Д. Математика, её содержание, методы и значение т1
Оре - приглашение в теорию чисел
Мендельсон - введение в математическую логику
Калужкин - введение в общую алгебру
Концепции современной математики
Гильберт Д., Бернайс П. - Основания математики
Колмогоров А.Н., Драгалин А.Г. - Математическая логика
Новиков - математическая логика и основания математики - элементы математической логики
Марков А.А. Элементы математической логики
Бурбаки - Теория множеств
Френкель А.А., Бар-Хиллел И. - Основания теории множеств
Куратовский К., Мостовский А. - Теория множеств
Коэн - Теория множеств и континуум-гипотеза
Барвайс Справочная книга по математической логике: теория множеств
Чёрч - Введение в математическую логику
Ершов Ю.Л., Палютин Е.А. - Математическая логика
Маклейн С. - Категории для работающего математика
Голдблатт Топосы Категорный анализ логики
Фрид Э.Элементарное введение в абстрактную алгебру
Кострикин А.И - Введение в алгебру. Часть 1. Основы алгебры
ван дер Варден Алгебра
Математический анализ. Часть I Зорич В.А
Курс чистой математики Харди
Вот сейчас и почитываю Курс чистой математики Харди, и Математический анализ. Часть I Зорич В.А, дабы разобраться с анализом и немного комплексным анализом. Две книги сразу разного уровня строгости и времени, дают некоторый контраст, что способствует лучшему пониманию одной и той же темы с разных сторон. Хотя может, что лучше есть?
-- 25.03.2014, 16:15 --мат-ламерa
из книги И.М. Гельфанд, С.М.Львовский, А.Л.Тоом - Тригонометрия