Означает ли это , что внутри горизонта могут возникать гравитационные волны?
Дались Вам эти гравитационные волны… Не бывает сферически симметричных гравитационных волн, так что их нет ни внутри, ни снаружи. Кстати, сферически симметричных электромагнитных волн тоже не бывает.
То, как формулирует теорему Бурланков встречается почти в каждом втором учебнике.
Учебник надо очень внимательно читать. Тогда можно разглядеть, что речь идёт о гравитационном поле сферически симметричного тела во
внешней области (заведомо вне горизонта чёрной дыры), о чём Бурланков не упоминает ни разу. Более того, то, что он в пункте 2.1 демонстрирует как пример, противоречащий теореме Биркгофа (и ещё раз об этом упоминает в пункте 2.4 после слов "формально математически теорема Биркгофа всегда выполняется"), описывает
внутреннюю область "вечной" чёрной дыры и по этой причине не имеет никакого отношения к тому, о чём идёт речь в учебнике.
Формулировка теоремы Биркгофа в МТУ, которую я приводил, является более общей и относится не только к внешней области, но и к всему пространству-времени Шварцшильда. Пример Бурланкова из пункта 2.1 этой формулировке не противоречит.
Что значит частью геометрии Шварцшильда? Это значит, что любое решение уравнений Г-Э вне вещества сферически симметричного тела можно представить в виде стандартного Шварцшильда?
Да (включая случай
, когда получается метрика Минковского). Но Вы сформулировали опять в ограниченном виде. Геометрия Шварцшильда включает две внешние и две внутренние области, и любое сферически симметричное решение уравнений Эйнштейна в вакууме представляет часть этого многообразия, и эту метрику можно привести к стандартному шварцшильдовскому виду. Я в
первом сообщении показал, как метрика "однородного решения" из пункта 2.1 приводится к шваршильдовскому виду.
Что значит частью?
Что такое часть яблока Вы понимаете? Здесь то же самое. Возьмём, например, сферически симметричное тело в вакууме. Геометрия пространства-времени, создаваемая этим телом, состоит из двух областей: внешней (где вакуум) и внутренней (занятой веществом). Внутренняя геометрия зависит от конкретного распределения вещества внутри тела, а внешняя — часть геометрии Шварцшильда. Не всё многообразие Шварцшильда с двумя внешними и двумя внутренними областями, а часть одной из внешних областей.
Что касается "конкретного примерчика", то возражений по существу от вас как не было так и нет.
Я пока не вижу никакого "конкретного примерчика", а метрика (12.11) (из книги Бурланкова) не существует как раз там, где Бурланков собрался применять комплексные преобразования. Я об этом уже
писал, но похоже, что Вы заодно с Бурланковым не знаете, что такое область определения функции.
Someone, вам оказалось слабо с первого раза разобраться о чём в книге идёт речь и вы второпях создали тему с лживым названием "Опровержение теоремы Биркгофа Бурланковым". Вы - лжец! Буквально. Это название не имеет отношения к действительности. Теперь-то вы наконец-то увидели, что формулировка-то была не та, что предполагали вы когда создавали эту ветку форума.
Ну почему же, я прекрасно видел, что Бурланков выдаёт формулировку, относящуюся к внешней области, за общую. Вопрос в том, видел ли разницу сам Бурланков. Возможно, я несколько погорячился, и Бурланков не лгал умышленно. За слово "лжец" я прошу прощения. Просто Бурланков не разбирается в том вопросе, о котором он взялся писать. Вплоть до того, что не понимает, что вне области определения функция не существует, за что школьникам снижают оценку на контрольной работе.
В общем случае квадратные корни есть.
Вы слишком много хотите: преобразовать заданную квадратичную форму в произвольно взятую квадратичную форму (пусть даже той же сигнатуры). В вашем распоряжении две функции, и Вы хотите, чтобы они удовлетворяли трём уравнениям.
Давайте уж ограничимся решаемой задачей: привести квадратичную форму к диагональному виду. И желательно не в общем виде, а на конкретном примере.