2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 3, 4, 5, 6, 7  След.
 
 Re: твердое тело
Сообщение21.12.2013, 11:32 
Аватара пользователя


10/12/13
78
ЮРГПУ (НПИ) им. М. И. Платова, РГУПС
Munin, Вы имеете в виду именно удар (мгновенное изменение скорости на конечную величину) или приложение конечной силы в определенный момент времени?

 Профиль  
                  
 
 Re: твердое тело
Сообщение21.12.2013, 11:37 
Заслуженный участник
Аватара пользователя


30/01/06
72407
schoolboy в сообщении #804159 писал(а):
Речь идет о классической механике, то есть скорость распространения сигналов бесконечна, мощность двигателей сервомеханизма всегда можно взять такой, чтобы измерениями нельзя было обнаружить изменение расстояний даже при постукивании (ведь стержень можно считать измерительным прибором, который при бесконечно малом изменении расстояния дает конечную силу реакции).

Можно, можно. Вопрос в том, что именно "бесконечнее": сервомеханизм (который реально работает с задержкой, и допускает "отставание" расстояния от заданного) или стержень (который реально тоже допускает малые деформации). Именно в этом состоит неопределённость, от разного разрешения которой будут получаться разные системы, вплоть до полной ненужности стержня и полной ненужности сервомеханизма.

-- 21.12.2013 12:37:50 --

maisvendoo в сообщении #804169 писал(а):
Munin, Вы имеете в виду именно удар (мгновенное изменение скорости на конечную величину) или приложение конечной силы в определенный момент времени?

Не, не, не, никаких ударных заморочек (специально не говорил слова "ударил"). Просто сила.

 Профиль  
                  
 
 Re: твердое тело
Сообщение21.12.2013, 11:48 
Аватара пользователя


10/12/13
78
ЮРГПУ (НПИ) им. М. И. Платова, РГУПС
Тогда, думаю, сервосвязь отработает это возмущение, ибо по условию задачи реагирует мгновенно, а реакция в стержне не появится.
Разумеется в том случае если стержень был введен в систему с уже работающей сервосвязью

 Профиль  
                  
 
 Re: твердое тело
Сообщение21.12.2013, 11:54 
Заслуженный участник
Аватара пользователя


30/01/06
72407
maisvendoo в сообщении #804176 писал(а):
Тогда, думаю, сервосвязь отработает это возмущение, ибо по условию задачи реагирует мгновенно, а реакция в стержне не появится.

Но стержень же тоже реагирует мгновенно, если он абсолютно жёсткий! :-)

maisvendoo в сообщении #804176 писал(а):
Разумеется в том случае если стержень был введен в систему с уже работающей сервосвязью

А вот последовательность введения роли не играет. Важно, кто из них "идеальнее".

 Профиль  
                  
 
 Re: твердое тело
Сообщение21.12.2013, 12:02 
Аватара пользователя


10/12/13
78
ЮРГПУ (НПИ) им. М. И. Платова, РГУПС
Мда, согласен. Система получается избыточной, если так верно выражаться

 Профиль  
                  
 
 Re: твердое тело
Сообщение21.12.2013, 13:44 


10/02/11
6786
На пятые сутки заключения индеец Зоркий Глаз обнаружил, что в сарае, куда бледнолицые заперли индейцев, не хватает одной стены. Еще неделя, и Munin , сообразит что в определении твердого тела связи тоже избыточны. :mrgreen: (В том смылсе, что реакции их неопределимы)

 Профиль  
                  
 
 Re: твердое тело
Сообщение21.12.2013, 13:58 
Аватара пользователя


10/12/13
78
ЮРГПУ (НПИ) им. М. И. Платова, РГУПС
Munin подал отличную идею. Всё нижеследующее адресовано Oleg Zubelevich

Задача: Точка $M_1$ движется горизонтально, прямолинейно, под действием потоянной силы $\vec{F}$. К точке $M_2$, расположенной на той же прямой на расстоянии $l$ от точки $M_1$ приложена сила, обеспечивающая выполнение условия $\left|x_1 - x_2\right| = l$. В некоторый момент времени на точку $M_2$ начинает действовать горизонтальная сила $\vec{F}_2$. Используя теорему, сформулированную в post803865.html#p803865, оценить изменение закона движения точки $M_1$ после приложения указанной силы.

 Профиль  
                  
 
 Re: твердое тело
Сообщение21.12.2013, 14:15 


10/02/11
6786
Уточните пожалуйста: после появления силы $F_2$ что произошло с силой, которая обеспечивала условие
maisvendoo в сообщении #804210 писал(а):
$\left|x_1 - x_2\right| = l$.

 Профиль  
                  
 
 Re: твердое тело
Сообщение21.12.2013, 14:15 
Аватара пользователя


10/12/13
78
ЮРГПУ (НПИ) им. М. И. Платова, РГУПС
Не надо "если". Сервосвязь куда делась? Не надо тут ничего уточнять, характер силы $\vec{R}$ можно получить из условия задачи

P.S.: Как вы быстро отредактировали свой пост. Жаль не процитировал...

 Профиль  
                  
 
 Re: твердое тело
Сообщение21.12.2013, 14:55 


10/02/11
6786
maisvendoo в сообщении #804210 писал(а):
Munin подал отличную идею. Всё нижеследующее адресовано Oleg Zubelevich

Задача: Точка $M_1$ движется горизонтально, прямолинейно, под действием потоянной силы $\vec{F}$. К точке $M_2$, расположенной на той же прямой на расстоянии $l$ от точки $M_1$ приложена сила, обеспечивающая выполнение условия $\left|x_1 - x_2\right| = l$. В некоторый момент времени на точку $M_2$ начинает действовать горизонтальная сила $\vec{F}_2$. Используя теорему, сформулированную в post803865.html#p803865, оценить изменение закона движения точки $M_1$ после приложения указанной силы.

maisvendoo в сообщении #804214 писал(а):
Сервосвязь куда делась? Не надо тут ничего уточнять, характер силы $\vec{R}$ можно получить из условия задачи




Ок. т.е. сервосвязь никуда не делась и продолжает обеспечивать равенство
maisvendoo в сообщении #804210 писал(а):
$\left|x_1 - x_2\right| = l$

Силу действия сервосвязи обозначим $G$.

И так, предположим сила $F_2$ включилась в момент $t'$ . Т.е. $F_2(t)=0,\quad t<t'$


До появления силы $F_2$ имеем $m_1\ddot x_1=F,\quad \ddot x_2m_2=G$ поскольку $\dot x_1=\dot x_2$ получим $G(t)=\frac{m_2}{m_1}F,\quad t<t'$.

Пусть теперь $t\ge t'$ тогда $m_1\ddot x_1=F,\quad \ddot x_2m_2=G+F_2$ и условие $\dot x_1=\dot x_2$ осталось. Тогда $G(t)=\frac{m_2}{m_1}F-F_2,\quad t\ge t'$

По теореме, мы можем применить к данной системе теоремы о движении твердого тела. напишем теорему о движении центра масс:
$$m\ddot x=F+F_2+G(t),\quad m=m_1+m_2,\quad x=(m_1x_1+m_2x_2)/m$$
это правильное уравнение, оно вытекает из уже написанного 2-го закона Ньютона для каждой точки в отдельности.

А пафос вашей задачи, простите в чем?

 Профиль  
                  
 
 Re: твердое тело
Сообщение21.12.2013, 15:04 
Аватара пользователя


10/12/13
78
ЮРГПУ (НПИ) им. М. И. Платова, РГУПС
Как изменится закон движения точки $M_1$?

 Профиль  
                  
 
 Re: твердое тело
Сообщение21.12.2013, 15:10 


10/02/11
6786
что такое "изменится закон движения" это я не понимаю, закон движения точки $m_1$ во все время описывается дифференциальным уравнением $m_1\ddot x_1=F$. Если $F=const\ne 0$ то $x_1(t)$ это парабола.

 Профиль  
                  
 
 Re: твердое тело
Сообщение21.12.2013, 15:19 
Аватара пользователя


10/12/13
78
ЮРГПУ (НПИ) им. М. И. Платова, РГУПС
Как изменится, по сравнению со случаем когда сила $\vec{F}_2$ отсутствовала. Решите этот вопрос с использованием вашей теоремы.

 Профиль  
                  
 
 Re: твердое тело
Сообщение21.12.2013, 15:24 


10/02/11
6786
что значит по "по сравнению со случаем", у вас случай один, просто $F_2$ зависит от времени: $F_2=0$ при $t<t'$ и $F_2\ne 0$ при $t\ge t'$.
Так вот функция $x_1(t)$ при всех $t$ является решением уравнения$m_1\ddot x_1=F$.

-- Сб дек 21, 2013 15:25:26 --

с использованием теоремы результат такойже см. пост выше.

 Профиль  
                  
 
 Re: твердое тело
Сообщение21.12.2013, 15:44 
Аватара пользователя


10/12/13
78
ЮРГПУ (НПИ) им. М. И. Платова, РГУПС
Тогда ещё вопрос - так что же вы используете для описания данной системы, согласно вашей теореме - теорему о движении ЦМ механической системы, или дифференциальное уравнение движения твердого тела?

Oleg Zubelevich в сообщении #804231 писал(а):
с использованием теоремы результат такойже см. пост выше.

Покажите это

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 100 ]  На страницу Пред.  1 ... 3, 4, 5, 6, 7  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: epros


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group