2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В раздел Пургаторий будут перемещены спорные темы (преимущественно псевдонаучного характера), относительно которых администрация приняла решение о нецелесообразности продолжения дискуссии.
Причинами такого решения могут быть, в частности: безграмотность, бессодержательность или псевдонаучный характер темы, нарушение автором принципов ведения дискуссии, принятых на форуме.
Права на добавление сообщений имеют только Модераторы и Заслуженные участники форума.



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение11.11.2013, 22:21 
Заслуженный участник
Аватара пользователя


15/10/08
12999
А что заставляет обозывать сию величину именно расстоянием? Это расстояние между чем и чем?

 Профиль  
                  
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение11.11.2013, 22:35 


26/04/08

1039
Гродно, Беларусь
Утундрий в сообщении #787657 писал(а):
А что заставляет обозывать сию величину именно расстоянием? Это расстояние между чем и чем?

Это расстояние между концами отрезка, а обозвать его можете как угодно.

 Профиль  
                  
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение11.11.2013, 22:40 
Заслуженный участник
Аватара пользователя


15/10/08
12999
Я уже ничего не понимаю. О чем речь? О длине отрезка или о числе его витков, при наматывании на что-то там?

 Профиль  
                  
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение11.11.2013, 22:59 


26/04/08

1039
Гродно, Беларусь
Утундрий в сообщении #787667 писал(а):
Я уже ничего не понимаю. О чем речь? О длине отрезка или о числе его витков, при наматывании на что-то там?

Наш отрезок не имеет евклидовой длины, у него псевдоевклидова длина, которая вычисляется посредством подсчёта числа витков намотки на задающие окружности тора. Если нужны формулы. то можете заглянуть сюда во второй раздел.

 Профиль  
                  
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение11.11.2013, 23:41 
Заслуженный участник
Аватара пользователя


30/01/06
72407
bayak в сообщении #787618 писал(а):
Если для кого-то мои слова это бессмыслица, то вполне вероятно, что этот кто-то чего-то не понимает.

Или вы.

bayak в сообщении #787618 писал(а):
Я тут на форуме уже приводил пример того, как намотка плоскости на тор индуцирует на этой плоскости псевдоевклидову метрику.

И ваш пример был неверен.

 Профиль  
                  
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение12.11.2013, 02:30 
Заслуженный участник
Аватара пользователя


15/10/08
12999
bayak в сообщении #787674 писал(а):
Если нужны формулы. то можете заглянуть сюда во второй раздел.

Спасибо, туда я уже заглядывал. Не могли бы вы здесь коротко показать кого и на что наматываете?

 Профиль  
                  
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение12.11.2013, 19:47 


26/04/08

1039
Гродно, Беларусь
Утундрий в сообщении #787758 писал(а):
Спасибо, туда я уже заглядывал. Не могли бы вы здесь коротко показать кого и на что наматываете?

Возьмём плоскость $(x,y)$ и намотаем её на тор так, чтобы диаглонали плоскости $y=-x$ и $y=x$ факторизовались в окружности $(x+y)/\mathbb{Z}$ и $(x-y)/\mathbb{Z}$ соответственно. Тогда у отрезка с координатами $(X,Y)$ число витков намотки на задающие окружности тора равно $X+Y$ и $X-Y$, а следовательно произведение этих чисел есть величина $(X+Y)(X-Y)=X^2-Y^2$, которую мы трактуем как квадрат псевдоевклидовой длины отрезка.

Впрочем, похоже вы с Muninым птицы невысокого полёта и я зря тут распинаюсь.

 Профиль  
                  
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение13.11.2013, 01:49 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
bayak в сообщении #787984 писал(а):
Впрочем, похоже вы с Muninым птицы невысокого полёта и я зря тут распинаюсь.
Весьма вероятно, что зря. Только не по этой причине. Вы безобразно неудачно объясняете.

А что такое $X,Y$ как координаты отрезка? И почему одной точке тора не может соответствовать несколько точек плоскости? Тогда до какой же считать?

 Профиль  
                  
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение13.11.2013, 11:22 


26/04/08

1039
Гродно, Беларусь
provincialka, $X,Y$ это координаты отрезка, отложенного от нулевой точки плоскости. Понятно, что ничего принципиально не поменяется, если отрезок одним концом не совмещён с нулевой точкой. И не говорите мне, пожалуйста, что Вам не понятно как считать число оборотов, наматываемых отрезком на задающие окружности тора. Ведь всё это можно ещё и нарисовать на бумаге.

 Профиль  
                  
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение13.11.2013, 13:48 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Я могу намотать. Непонятно, как наматываете вы. Тем более, что наматывать можно многократно.

Зададим точки на торе двумя углами, $\varphi$ в горизонтальной плоскости и $\theta$ в вертикальной. Радиусы окружностей $R$ (горизонтальный, большой) и $r$, малый. Задайте две точки и скажите, как вы между ними будете измерять расстояние.

 Профиль  
                  
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение13.11.2013, 18:28 


26/04/08

1039
Гродно, Беларусь
provincialka в сообщении #788203 писал(а):
Задайте две точки и скажите, как вы между ними будете измерять расстояние.

Расстояние измеряется не на торе а на обмотке тора, точнее на плоскости, которую мы наматываем на тор.

 Профиль  
                  
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение13.11.2013, 21:23 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
А разница? Приведите численный пример.

 Профиль  
                  
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение13.11.2013, 22:37 
Заслуженный участник
Аватара пользователя


15/10/08
12999

(Оффтоп)

bayak в сообщении #787984 писал(а):
птицы невысокого полёта

Вы это вывели из того, что я на вас до сих пор не нагадил? Но, уважаемый, это же миф! Летающие выше совсем не обязательно гадять на всех летающих ниже. Впрочем , возможно, вы судите по себе? :D

 Профиль  
                  
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение13.11.2013, 23:27 
Заслуженный участник
Аватара пользователя


30/01/06
72407

(Оффтоп)

Утундрий - птица настолько высокого полёта, что если он сверху и гадит, то дальше падая в атмосфере, всё это развеивается в совершенно неощутимую субстанцию. Примерно как то, что смывают из туалета самолётов. :-)

 Профиль  
                  
 
 Re: Фантазии на тему о форме вакуума и элементарных частиц
Сообщение14.11.2013, 01:42 
Аватара пользователя


05/01/13

3968

(Оффтоп)

Munin

А разве самолёты не запасают в себе все отходы жизнедеятельности?.. Я всегда думал, что они сохраняют сточные воды в соответствующих резервуарах, а на земле подъезжает специальная машина и откачивает. Это ж не поезд всё-таки.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 37 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: CDDDS


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group