Метрика на множестве действительных чисел — это вторичная структура.
Ну и что из того?
А то, что без вторичной структуры можно обойтись, поскольку она определяется через основные структуры.
Первичными являются арифметические операции и отношение линейного порядка, а метрика определяется уже через них.
А вы не упрощаете?
Нет, не упрощаю. Я говорю о том, что хорошо знаю.
Что из них, а не как отображение из двумерного действительного пространства в одномерное с некоторыми свойствами отображения?
Не понял вопроса. Вы можете сформулировать его, соблюдая правила русского языка?
Поэтому всё, что касается действительных чисел, можно определить без метрики.
Сильное утверждение, особенно в части "все". Но пусть.
Не сильное, а тривиальное. Совершенно тривиальное.
Но зачем так извращаться если метрику на многообразии все равно придется вводить. Мы же не о чистой топологии говорим, а о теории относительности.
Видите ли, то, что называется "метрикой" в теории относительности, с точки зрения топологии никакой метрикой не является. И совершенно не годится для определения понятия предела и всех происходящих от него понятий, включая понятие производной. С определением предела топология справляется сама, без привлечения других структур, даже если речь идёт не о пределе числовой функции на множестве действительных чисел, а о пределе произвольного отображения одного топологического пространства в другое.
В частности, как я уже говорил, для определения предела достаточно понятия интервала, определяемого через отношение порядка.
Угу это Вы о сходимости некой последовательности к некому элементу множества.
Так и хочется Вам какую-нибудь глупость придумать и приписать её мне. Я где-нибудь упоминал последовательности? Я говорил вообще о пределе отображения (функции). Разумеется, предел последовательности можно определить чисто топологическими средствами, используя окрестности, как и предел любого другого отображения (предел по базе).
Тут действительно можно обойтись формализмом окрестностей без метрики. Но как только Вы говорите об отношении физических величин, которые связаны с показаниями приборов, а это всегда натуральный ряд, т.к. показания приборов существенно дискретные, я не понимаю как тут быть, да и вообще зачем так усложнять.
В математике нет ни физических величин, ни измеряющих их приборов. И задачи определения предела для приборов в математике тоже нет. В физике, кстати, тоже такой задачи не наблюдается. Что касается "усложнения", то, как я уже говорил, определение предела на языке окрестностей выглядит более наглядным, чем традиционное определение на языке "
".
EvgenyGR в сообщении #781051 писал(а):
В определение отношения эквивалентности
Какого отношения эквивалентности?
А это по ссылке.
В русской тоже есть: тыц.
EvgenyGR в сообщении #781051 писал(а):
в о-малом
о-малое определяется с помощью предела, а предел определяется без метрики.
Можно, но в ссылке Xaositect это специально не оговорено. И я могу понимать буквально то что написано.
А там никакой метрики в определении эквивалентности нетути. Используется символ "о-малое", который определяется через предел. Поэтому Вы не только не поняли написанное "буквально", а вообще всунули туда свой вымысел.
Во-первых, никакой среды не вижу. Во-вторых, Вы так и не смогли объяснить, как из отображения получить метрику.
Да Вы сами и ответили
Скопировать метрику с одного множества на другое, конечно, можно, но это наверняка будет не то, что нужно:
Может будет, а может и нет. Вот саму такую возможность копирования метрики я и предлагал использовать как критерий сводимости (не сводимости) ТО к среде.
И, потом, скопировать метрику — это не то же самое, что определить метрику, поскольку, прежде чем копировать метрику, её нужно уже иметь.
Так она всегда есть в пространстве вещественных чисел. Ну т.е. ее легко ввести.
Ну так попробуйте скопировать метрику с плоскости на сферу. И постарайтесь, имея стандартную метрику на плоскости, получить стандартную метрику на сфере.
А вообще, я хочу Вам напомнить, что Вы говорили не об отображении одного множества (с уже имеющейся метрикой) на другое. Вы говорили об отображении пространства
в себя:
отображение исходного пространства в себя (необязательно биекцию).
В теории относительности (хоть специальной, хоть общей) метрика (то, что там понимается под этим термином, а не метрика в топологическом смысле) просто задаётся на четырёхмерном многообразии. Без всяких отображений этого многообразия в себя. Вы же хотите задать эту метрику с помощью отображения пространства в себя.
Итак: берём четырёхмерное многообразие без какой-либо метрики; ваша задача: задать отображение этого многообразия
в себя и с его помощью определить метрику. Такую, которая используется в теории относительности.
А потом (и
только потом) будем обсуждать возможность "формализма среды" в теории относительности. В частности, Вы будете подробно объяснять, каким образом отображение пространства в себя превращается в среду. Если справитесь с метрикой, конечно.
то попробуйте поверить профессиональному математику, 38 лет преподающему студентам математический анализ
Увы но я человек глубоко не верующий, меня к этому взгляду на жизнь подвиг опыт решения прикладных задач.
Да мне глубоко начхать на ваши верования. Если Вам хочется продолжать изрекать идиотизмы — это ваша проблема. В конце концов, читая ваши "откровения", смеются над Вами, а не надо мной.
А вообще, производная на самом деле является линейным оператором.
Оператор она в Гильбертовых пространствах, ну или подобным им.
Ничего подобного. Производная является линейным оператором уже в конечномерном случае. Даже в одномерном, то есть, в случае обычных функций одной переменной. Только случай функции одной переменной тривиален, поскольку оператор сводится к умножению на число:
.