Lvov в сообщении #765637 писал(а):
Это известные волновые уравнения: для ЭМ случайных полей - уравнение Максвелла для вектора-потенциала, для электронов - уравнение Дирака.
То есть, «случайные поля» -- это просто такое название.
На самом деле «случайные поля» не случайные и их изменение со временем вполне предсказуемо, если заданы начальные данные. Так?
И вообще, какой состав полей в Вашей теории. Я правильно понял, что это
1) обычное электромагнитное поле
;
2) «случайное электромагнитное поле», обозначим его
которое подчиняется свободному уравнению Максвелла;
3) обычное спинорное поле
;
4) «случайное спинорное поле», обозначим его
которое подчиняется свободному уравнению Дирака?
Если так, то какие уравнения движения для обычных полей? Особенна интересна та часть, которая отвечает за взаимодействие. Формулами напишите пожалуйста, если не затруднит.
Цитата:
Lvov в сообщении #765637
писал(а): В виду случайного значения амплитуд ...
А почему амплитуды случайными стали? Если решить уравнения с некоторыми начальными данными, то тем самым амплитуды зафиксируются. Они будут константами не зависящими от координат и времени. (Я так понял, что речь идёт о разложении решения в интеграл Фурье.)
Сначала более простой вопрос: о рассматриваемых в публикации волновых полях. Это электромагнитное поле (ЭПП) и электронно-позитронные поля (ЭПП).
Эти поля могут быть регулярными (это поля наблюдаемых частиц) и случайными (это развитие понятий нулевые вакуумные колебания ЭМП и нулевые состояния электронов и позитронов). В некоторых источниках упоминаются существование нулевых вакуумных состояний для всех лептонов, но я ограничиваюсь электронно-позитронными полями. Природа регулярных и соответствующих случайных полей одинакова. Видимо, одинакова природа и всех лептонных полей. Регулярные и случайные поля просто разные состояния одноименных полей.
Уравнения Максвелла и Дирака для свободных и взаимодействующих полей хорошо известны, и я не понимаю, почему вы просите меня воспроизвести их в сообщении, то ли меня проверяете на лопуха, то ли сами не в курсе дела? Вот эти уравнения для взаимодействующих полей:
В случае свободных полей плотность тока-заряда
в первом уравнении и вектор-потенциал
во втором уравнении равны нулю.
Второй вопрос сложный. Вы меня поймали на противоречии: я толкую о случайных хаотически взаимодействующих случайных волновых полях, и тут же утверждаю, что они подчиняются уравнениям невзаимодействующих полей. Это противоречие связано с моим плохим пониманием теории случайных взаимодействующих заряженных и незаряженных полей.
Я думаю, решение этого проблемы следующее: Конечно, набор полей, случайных в первый момент остается случайным при их дальнейшем распространении, как свободных полей. Однако рассматриваемые поля все же хаотически взаимодействуют, но видимо в умеренной степени. Почему я ошибся? Я рассуждал так: поскольку вакуумные поля включают в равной мере заряженные частицы и античастицы, то при рассмотрении бесконечного спектра частот из заряды полностью компенсируются. Так же компенсируются в рассматриваемом случае и суммарные амплитуды ЭМ полей. Но реальность, похоже, сложнее. Есть факторы, обеспечивающие некоторое отклонение от данной ситуации. Первый фактор - снижение спектральной плотности действия вакуумных полей при сверхвысоких частотах (так называемое высокочастотное обрезание). Второй фактор - взаимодействие случайных полей с регулярными полями, при котором составляющие случайных полей изменяются. В таком случае заряды ЭПП и амплитуды вектор-потенциала ЭМП случайных полей полностью не компенсируются, и эти поля все же хаотически взаимодействуют. Но на временных интервалах умеренной длины их можно считать свободными.
Признаю, что вопрос случайных полей у меня изложен неточно, и нуждается в дальнейшей доработке, видимо не без участия математиков.
С уважением О.Львов
-- 21.09.2013, 11:45 --Всё бы хорошо, но на экране электрон регистрируется не как волна, а как точка.
Рассматривается слабое электронное поле, и его интенсивности хватает лишь на возбуждение одного атома детектирующего экрана, несмотря на фактор его концентрации в малой области за счет подходящей флюктуации случайного электронного поля. Речь идет о редукции волновой функции.
С уважением О.Львов