Последний раз редактировалось Denis Russkih 12.08.2013, 21:25, всего редактировалось 2 раз(а).
С позволения присутствующих, вклинюсь-ка и я в беседу. :) а когда общество приняло это доказательство Неплохо. Можно будет отдельные теоремы с доказательствами для большей уверенности выносить на референдумы. Фундаментальные - на общегосударственные, леммы и всякие вспомогательные утверждения - на городские и районные. Аксиомы предлагаю обсуждать на заседаниях Государственной Думы и Совета безопасности. Постулаты физических теорий - на совещаниях G20. Комический эффект, возможно, получился из-за того, что в исходном утверждении отсутствует прилагательное: научное общество?.. Но я вот читал такую интересную вещь в блоге Хеллера (к сожалению, там сейчас какие-то технические проблемы, но пост можно посмотреть в кэше гугла): (Много буковок)
Цитата: Доказательства
К доказательствам отношение в школе и в институте так же формируется некорректное. Надо понимать три вещи:
1) Целью доказательства является логически корректное убеждение спорящего оппонента, а не достоверное установление истины.
2) Достоверно корректных доказательств вообще почти не существует.
3) Доказательств каждого отдельного факта чаще всего существует довольно много и нет никакого единого доказательства, которое надо знать.
Я поясню что я имею ввиду.
Во-первых, вы должны знать, что вы скорее всего не видели ни одного действительно полноценного и строгого доказательства в своей жизни (это не относится к математикам-теоретикам и логикам). Большая часть доказательств в математике в том виде, как она представлена в учебниках, совершенно не формальна и содержит огромное количество дырок, и это не недостаток учебников, а суть нашего мышления.
Возьмём аксиомы Евклида и его книгу «Начала». Как я уже упоминал, в ней первая же теорема доказана некорректно. Некорректность заключается в том, что Евклид полагал очевидным тот факт, что две достаточно близко располагающиеся друг к другу окружности обязательно пересекутся (в его случае когда радиус равен расстоянию между центрами окружностей). Это действительно кажется очевидным, но, оказывается, из аксиом Евклида это невозможно доказать, и причина кроется в том, что его аксиомы не раскрывают сути непрерывности линии — вполне может быть, что окружности содержат большое количество «щелей», говоря неформально, в своей внутренней структуре, и если пересечение придется на такие «щели», то никакого пересечения по сути и не будет — у окружностей не найдется в этом случае общих точек.
Это очень тонкий момент, но для полноты строгости его необходимо рассматривать. Это приводит к тому, что вместо пяти аксиом Евклида приходится рассматривать двадцать аксиом Гильберта, которые закрывают дырки Евклидовой геометрии. Но возникает резонный вопрос: а нужна ли нам вообще такая строгость? Что реально получает студент-инженер или школьник, рассматривая вместо пяти аксиом двадцать аксиом? Ведь скорее всего эти щели в окружностях ему будут совершенно непонятны и будут казаться надуманными — чтобы вполне осознать их возможность, надо предварительно изучить понятие полноты метрических пространств, а это уже довольно продвинутый теоретический материал. Изучение же метрических пространств без предварительной геометрической интуиции так же будет бессмысленным.
Здесь как раз возникает вопрос убедительности. Аксиомы Евклида были сформулированы в третьем веке до нашей эры, а их неполнота стала понятна лишь во второй половине XIX-го века. Во весь этот промежуток времени ни у кого не было никаких сомнений в верности доказательств Евклида. В школе до сих пор используются аксиомы и доказательства Евклида — они некорректны, что очевидно любому математику, но они в то же время убедительны, и никого в школе они не смущают. Но тогда возникает вопрос, стоит ли тратить время вообще на эту формулировку неполноценных аксиом и неполноценные доказательства? Так факт, что вертикальные углы равны между собой очевиден на глаз, и никакой школьник никогда не поймёт зачем это надо доказывать. Так не логично ли выкинуть это доказательство вообще из курса школьной геометрии, наряду с другими? Моя программа по геометрии, данная выше, как раз предполагает именно подход доказательств, беря за основу не аксиомы и строгие выводы, а очевидные соображения.
Аналогичная ситуация наблюдается в матанализе. Исторически производные, пределы, интегралы и ряды появились гораздо раньше, нежели они были формально обоснованы с точки зрения эпсилон-дельта формализма. Такой выдающийся математик как Эйлер доказал огромное количество теорем, но за эти доказательства в современном российском ВУЗе ему поставили бы твёрдый кол: Эйлер просто не знал о том, что надо еще доказывать всякие там сходимости, произнося слова типа «для любого эпсилон больше нуля, существует такое эн, что…» Тем не менее, доказательства Эйлера казались совершенно строгими и убедительными его современникам — в то время никто не занимался поиском контрпримеров и тонким анализом сходимости.
Что здесь важно заметить: при всей нестрогости доказательств Эйлера, результаты, которые он получил (даже самые невероятные), оказались верны. Почему так произошло? Как я уже упоминал выше, вам очень маловероятно что попадутся примеры функций, обладающих какими-то неприятными свойствами, а если они и будут, то эти неприятные свойства чаще всего будут совершенно очевидны. Чтобы сконструировать какой-то контрпример, в котором будет важно тонко анализировать свойства сходимости, надо очень здорово попотеть. Посмотрите, к примеру, книгу Гелбаума и Олмстеда «Контрпримеры в анализе». Вы очень быстро поймёте, что такие функции вам никогда не понадобятся на практике.
На самом деле даже при всем желании провести корректное полноценное доказательство и построение математики, вам этого не удастся. Институтский эпсилон-формализм преподаватели обычно позиционируют как полноценное доказательство, хотя на самом деле это очень далеко от истины: студентам инженерных специальностей не доказывают, что вещественная прямая полна, а стало быть может случиться такое, что последовательность хоть и сходится по признаку Коши (является фундаментальной), но не имеет предела, ведь вещественные числа как пополнение рациональных на инженерных специальностях не вводятся — вещественные числа подразумеваются там чем-то очевидным, хотя это далеко не так.
Даже если определить вещественные числа как пополнение рациональной прямой, остаётся вопрос как ввести рациональные числа. Положим, с ними проблемы большой нет, в предположении того, что мы владеем теорией натуральных чисел. А как определить натуральное число? Очень непонятный и неочевидный (без дополнительной подготовки и подробного изучения вопроса) способ предоставляет теория множеств, которую лишь на базовом уровне преподают лишь на некоторых специальностях.
Тут возникает проблема аксиоматизации теории множеств, поскольку наивные представления о множествах тут же приводят к чудовищным противоречиями. Возникает потребность в строгой аксиоматике на языке формальной логики. Здесь уже сразу возникает вопрос о том, что аксиоматизаций теории множеств существует много разных и хорошо бы обсудить со студентами их различия, а так же следующие из некоторых из них парадоксы. Но даже если рассматривать лишь одну какую-нибудь аксиоматику, возникает вопрос строгого обоснования используемой логики, на которой мы формулируем аксиомы. Логических парадоксов ведь тоже довольно много, да и самих разновидностей логики существует изрядное количество: какое-то время назад многие математики активно выступали против классической логики в пользу интуиционистской, но даже в рамках привычной всем логики возникают вопросы использования логики более высокого порядка нежели первого, или необходимости рассматривать модальную логику, или же нашей правомочности в принципе рассматривать объекты бесконечной природы. Во Вселенной ведь судя по всему лишь конечное число частиц, так имеем ли мы право мыслить о всяких там континуумах и счетных множествах в математических рассуждениях? Не является ли это всё одним большим заблуждением? Эти вопросы не стоят сейчас на полном серьезе в математике, но тем не менее они показывают, что корректность математического доказательства — вещь очень относительная.
Конечно, какого-то уровня строгости рассуждения надо придерживаться, но непонятно кто имеет эксклюзивное право устанавливать эту границу формальности, которой должен следовать учащийся. Кто вообще придумал, что ровно эпсилон-формализм (или любой другой) является необходимым формализмом для любого студента? Почему в институте не принимают графические «доказательства», но принимают рассуждения никак не обозначающие свойства полноты вещественной оси и измеримости множеств, как данное?
Способен ли этот формализм, преподающийся на инженерных специальностях, убедить глубоко мыслящего, понимающего и дотошного человека? Очевидно, нет. Делает ли этот формализм материал проще и интуитивнее? Тоже, очевидно, нет. Является ли сам этот подход широко применимым и полезным? Да он вообще устарел, чрезвычайно сложен и громоздок. Сам Коши, используя эпсилоны и дельты, очень часто лепил ошибки и после публикации какой-нибудь «теоремы», тут же выпускал вторую публикацию вдогонку в духе «ой, извините, я ошибся, на самом деле там вот так должно быть». В современной математике этот формализм заменен более общими и простыми концепциями. Так логично ли требовать от студентов знать и изучать это? Существует ли вообще какой-либо формализм и доказательства, которые необходимо знать?
Поэтому я и утверждаю, что цель доказательства — убедить. В научном сообществе задачей является убеждение рецензентов. Это довольно хороший подход: если большое количество профессионалов за какое-то время, подробно изучая ваше рассуждение, не нашло в нем никаких недочетов и контрпримеров, мы можем утверждать, что это доказательство, видимо, хорошее. С точки зрения абсолютности философской истины это конечно же не так, но для научной практики этого достаточно. Получается, что автор загнался?.. :) Или просто я чего-то не понимаю?
|