А что нужно тогда сделать, чтобы магнитное поле было постояным?
Для этого есть два (практических) варианта.
1. Создать систему постоянных токов. Например, электромагнит, подключённый к гальваническому элементу (к батарейке).
2. Взять намагниченное вещество.
Магнетизм магнитных веществ образуется за счёт токов внутри вещества - за счёт движения и спина электронов. Так что, по смыслу это один и тот же вариант, но экспериментально реализуется по-разному. Можно ещё взять сверхпроводящее кольцо - в нём тоже может течь постоянный ток.
Эти варианты образуются множеством электронов. Поэтому я их и не упомянул в своём перечислении.
Насколько я знаю, статическое электрическое поле электрона простирается бесконечно далеко от электрона.
Это тоже верно в случае одного электрона, но может быть иначе, если взять множество электронов. А именно, можно окружить электрон заземлённой проводящей оболочкой - и тогда электрическое поле на оболочке закончится, и на бесконечное расстояние не распространится.
Выходит, что соленоидальное поле не простирается бесконечно, а имеет жётские геометрические границы?
Нет, оно тоже "простирается бесконечно". Смысл моей оговорки в другом: в той точке, где находится электрон, электрическое поле
перестаёт быть соленоидальным - у него появляется слагаемое с
Но само электрическое поле там тоже есть.
Можно взять границу вокруг электрона - например, сферу радиуса
- и тогда снаружи от этой границы поле будет соленоидальным. И эту границу можно провести на любом радиусе, на сколь угодно малом. А вдали, на бесконечности, соленоидальность поля нигде не нарушается.
И почему в пространстве вокруг электрона поле общего вида, в то время как в пространстве вокруг неподвижного электрона потенциальное? В чём различие потенциального и общего?
Тут дело как раз в том, что движущийся электрон - это переменный по времени заряд. В одной точке он сначала есть, а потом нет. А в другой точке его сначала нет, а потом он появляется. Поэтому, и поле, создаваемое этим зарядом, переменное по времени. А дальше идёт закольцованная цепочка причин и следствий, по уравнениям Максвелла:
- раз есть переменное электрическое поле, то есть и магнитное поле;
- рассматривая это магнитное поле, мы обнаружим, что оно тоже переменное (потому что его создаёт не постоянная конфигурация источников);
- раз есть переменное магнитное поле, то есть и индуцированное им электрическое поле;
- рассматривая это индуцированное электрическое поле, мы обнаружим, что оно тоже переменное;
- и так далее, по кругу.
Таким образом, электрическое и магнитное поле "передают эстафету" друг другу, и возникают, и начинают изменяться, на расстояниях всё дальше и дальше от электрона. Полная картина полей, возникающих в таких условиях, должна учитывать эту причинно-следственную цепочку
на всю бесконечную длину. Это будет называться решением уравнений Максвелла.
Существуют несколько математических способов решений уравнений Максвелла, но я в них углубляться не буду (они изложены в учебниках по электродинамике, по теории поля, и по уравнениям математической физики). Главное, что в них общего, - это то, что они стараются "просуммировать" всю эту бесконечную цепочку сразу. Аналогично тому, как можно просуммировать геометрическую прогрессию с бесконечным числом слагаемых, и записать её как краткое выражение
и дальше с ним работать. Поэтому, когда вы слышите про какие-то конкретные электрические и магнитные поля - это уже результат всей этой проделанной работы. Например, электрическое и магнитное поле равномерно движущегося электрона, или электромагнитная волна.
Т.е. вот отличие стационарного электрического поля от электростаческого.
Ох, вас подвела непривычка читать учебники внимательно. Акцент в приведённой цитате стоит не на слове "стационарное", а на слове "поле электрического тока". Если этого не уточнять, то "стационарное" и "статическое" - одно и то же.
А "поле электрического тока" - это указание не на тип поля, а на то, чем и в каких условиях это поле создаётся. Такие условия бывают:
- неподвижными электрическими зарядами;
- постоянными электрическими токами;
- движущимися и ускоренными зарядами, и переменными токами;
- отсутствием зарядов, токов, и всякого вещества (вакуум).
Первый случай, из-за своей простоты, рассматривается в отдельном упрощённом разделе электродинамики - в электростатике. Поэтому, он называется электростатическим. "Электростатическое поле" - это сокращённо сказанное "электрическое поле в электростатическом случае".
В цитате, которую вы привели, сравниваются электрические поля в двух случаях - в электростатическом, когда источники - неподвижные заряды; и в случае постоянного тока. Но поле и там и там стационарное! Кроме того, и там и там оно потенциальное. Но физическое соотношение этого поля с проводниками разное, что цитата и объясняет.