Вывод гипотезы Харди-Литлвуда для простых близнецов (без предположения о независимости остатков при делении на разные простые числа)
На основании следствия 2 вероятность, что натуральное число х является простым равна:

Используя формулу Мертенса можно записать:

где C-постоянная Эйлера.
Это эквивалентно:
Пусть

- событие, что большое натуральное число n является простым.
Тогда на основании формул (1),(2):

Пусть

- событие, что большое натуральное число n+2 является простым.
Так как число n значительно больше 2, то

Так как n является большим натуральным числом, то все вероятности:

принадлежат одной вероятностной мере, их можно сравниваить и для них выполняется формула вероятности произведения событий.
Покажем, что вероятность события, что большое натуральное число n+2 является простым при условии, что число n является простым равна:

При большом n, если оно является простым числом, то обязательно нечетным, поэтому n+2 также является нечетным числом. Если n+2 является простым числом, то оно не должно делиться на простые числа:2, 3,5,7,...
Вероятность, что нечетное простое число n+2 не делится на 2

.
Определим вероятность, что нечетное простое число n+2 не делится на 3 при условии, что n является простым.
Разобьем натуральные числа на 3 непересекающихся класса:3k-2,3k-1,3k, где k-натуральное число. Простые числа находятся только среди двух классов: 3k-2,3k-1. Если простое число n принадлежит классу 3k-2, то простое число n+2 должно принадлежать классу 3k, но это не возможно. Если простое число n принадлежит классу 3k-1, то простое число n+2 должно принадлежать классу 3k+1, что возможно. Поскольку плотности простых чисел в классах 3k-2,3k-1, 3k+1 равны, то вероятность, что n+2 делится на 3

.
Определим вероятность, что нечетное простое число n+2 не делится на 5 при условии, что n является простым.
Разобьем натуральные числа на 5 непересекающихся класса:5k-4,5k-3,5k-2,5k-1,5k где k-натуральное число. Простые числа находятся только среди 4 классов: 5k-4,5k-3,5k-2,5k-1. Если простое число n принадлежит классу 5k-2,, то простое число n+2 должно принадлежать классу 5k, но это не возможно. В остальных 3 случаях простое число n+2 должно принадлежать классу 5k-2,5k-1,5k+1 что возможно. Поскольку плотности простых чисел в классах 5k-4.5k-2,5k-1,5k+1 равны, то вероятность, что n+2 делится на 5

и.т.д.
Здесь я делаю единственное предположение при выводе гипотезы.
Я предполагаю, что остатки от деления натурального n на разные простые числа не зависят от того является ли n простым числом или нет, т.е коэффициент зависимости остатков сохраняется равным

, как в формуле (4).
Это моя гипотеза. Если кто-то считает, что она не справедлива, то тем самым он считает также, что не справедлива и сама гипотеза Харли-Литлвуда. Это станет ясным из дальнейшего вывода.
С учетом зависимости остатков

На основании формул (4), (5) определим отношение:

На основании формулы (6) и формулы вероятности произведения событий можно записать:

Учитывая большое значение n:
Поэтому (7) можно представить в виде:

где

определяется по формуле (6).
Формула (7) соответствует гипотезе Харди-Литлвуда для простых близнецов.