Чё-то он не тензор, а всего лишь вектор. А зависимость от координат какая? Может, это что-то интегральное?
Ну так и есть. Он вектор в каждом из пространств: в
-мерном (индекс
) и 2-мерном (индекс
). В талмудах по струнам это есть. Например в ГШВ в 1 томе на стр.85 начинается. Для тока энергии-импульса формула (2.1.62)
(
-- натяжение струны) и для сохраняющегося
-мерного вектора энергии-импульса формула (2.1.66)
(вид формул слегка поменял).
Если брать действие струны в поляковском виде то УД участвует в обоих примерах, согласен. А если Намбу-Гото? Тогда УД не нужно.
Я вообще не знаю как в струне с действием Намбу-Гото определяется аналог
.
Берем действие рел. частицы в виде корня, - длины мировой линии, условие массовой поверхности (которое в случае струны превратится в ТЭИ=0) вылазит как первичная связь, т.е. без УД. Если действие брать квадратичное с эйнбейном, то связь вторична, т.е как раз вытекает из УД на эйнбейн.
Наверно я плохо понимаю, что Вы хотите сказать. По моим понятиям всё на УД и все связи первичные. Или я всё-таки неправильно понял.
Аналогичное происходит в струне, если действие, площадь - Намбу-Гото, то есть связи первичные, смысл их, а именно равенство ТЭИ нулю, хотя и не виден пока, (нет метрики по которой надо варьировать для получения ТЭИ), но если перейти к действию Полякова, то получаем те же связи как УД на двумерный цвейбейн - метрику волд шита, которые и будут давать ТЭИ=0 . Так рассказывают в талмудах по струне.
Здесь я ещё меньше понял. Вы бы формулы написали, если конечно хотите.
Кстати, когда то вы мне разъясняли как вторая т. Нётер из репараметризационной инвариантности лагранжиана, без применения УД даёт массовую поверхность topic54380-60.html , в струне всё аналогично.
Репараметризационная (калибровочная) инвариантность по второй теореме Нётер даёт
тождества, составленные из уравнений движения
Либо я опять не понял.