Теорию категорий не совсем хорошо воспринимать как «теорию» в том смысле, что у нее есть какие-то методы, и ими что-то решается. Главное ее достижение — то, что она предоставила язык, на котором естественным образом формулируются теоремы, который проясняет не вполне заметные ранее связи, который делает другие области математики концептуально более простыми. То есть, не так много теорем и методов можно отнести собственно к теории категорий; гораздо больше тех, которые естественно формулировать на языке теории категорий (а до этого их формулировали не в такой общности, не теми словами...) Поэтому, например, огромное количество задач из алгебраической геометрии, алгебраической топологии, математического анализа, теории чисел, функционального анализа, дифференциальных уравнений, и т. д., решенных после того, как в соответствующих областях был применен аппарат теории категорий, можно отнести к таким результатам, о которых Вы спрашиваете.
Возможно, Вы имели в виду немного другую формулировку — есть ли какая-то
конкретная задача, в решении которой достаточно явно видно преимущество применения теории категорий. Конечно, есть. Например, в
https://web.math.princeton.edu/~nmk/mellin398.pdf исследуются какие-то совершенно конкретные вопросы про экспоненциальные суммы (я сам не специалист, впрочем), и получаются новые результаты с помощью нетривиального применения таннакиевых категорий, превратных пучков, и т. д. Кстати, и собственно гипотезы Вейля — совершенно конкретные утверждения про число решений полиномиальных уравнений над конечными полями — удалось доказать лишь с помощью применения серьезного аппарата алгебраической геометрии, построенного на категорном языке (во многом, для доказательства этих самых гипотез). То же можно сказать про гипотезы Каждана—Люстига. Примеров много, я называю то, что приходит в голову прямо сейчас и как-то близко к области моих интересов.