Н. Е. Кочин ВЕКТОРНОЕ ИСЧИСЛЕНИЕ И НАЧАЛА ТЕНЗОРНОГО ИСЧИСЛЕНИЯ писал(а):
В сущности представление некторого произведения вектором чисто
условно; гораздо естественнее было бы изображать его площадкой,
например, параллелограммом, построенным на векторах а и Ь, имеющим
определенное направление обхода в зависимости от порядка сомножителей.
Однако для целей векторного анализа гораздо удобнее оперировать
с вектором, представляющим эту площадку и являющимся как бы ее
дополнением в нашем трехмерном пространстве.
Такие векторы, связанные с направлением некоторого обхода, назы-
ваются аксиальными, осевыми, или псевдовекторами.
К числу их принадлежит, помимо вектора, представляющего пло-
щадку, и помимо векторного произведения двух обыкновенных или, как
их обычно называют, полярных векторов, еще, например, угловая
скорость вращения твердого тела, которую можно представлять вектором,
направленным по оси вращения о ту или другую сторону в зависимости
от наличия обхода вокруг оси в ту или другую сторону (отсюда название
аксиальный, или осевой, вектор).
Полярными же векторами являются, например, перемещение, ско-
рость, ускорение, сила.
Природу того или другого механического вектора можно узнать по
следующему правилу.
Отразим явление в плоскости, перпендикулярной к рассматривае-
мому вектору; если при этом направление, в котором протекает явле-
ние, изменится на обратное, то вектор есть полярный; если же направ-
ление явления останется прежним, то мы имеем дело с аксиальным век-
тором. Так, отражая векторное произведение двух полярных векторов
и плоскости составляющих векторов, мы последние, очевидно,не изменим,
явление не изменится, следовательно, векторное произведение двух по-
лярных векторов есть вектор аксиальный.
В качестве другого примера рассмотрим вращение твердого тела
вокруг оси.
Отражая явление вращения в плоскости, перпендикулярной оси вра-
щения, увидим, что вращение будет происходить опять в ту же самую
сторону, поэтому вектор угловой скорости мы должны считать вектором
аксиальным. Напротив, отражая вектор скорости точки в перпендикуляр-
ной к нему плоскости, мы увидим, что точка будет двигаться в обратную
сторону, следовательно, вектор скорости есть полярный вектор.
...
Заметим, что при зеркальном отображении и при инверсии левая
система координат переходит в правую и обратно, так что пока мы ос-
таемся и области одних левых или одних правых систем координат, ни-
какого различия между полярными и аксиальными векторами нет.
Когда же мы переходим от левой системы к правой или обратно, то
аксиальный вектор изменяет свое направление на прямо противоположное,
в то время как полярный вектор остается без изменения.
Это и вызывает то различие в поведении составляющих вектора, ко-
торое было выше указало.
Значение различия между аксиальными а полярными векторами
состоит в том, что, подобно тому как складывать, вычитать и приравни-
вать можно только величины одинаковой размерности, так точно векторы
разного рода не могут быть складываемы или сравниваемы. В самом
деле, иначе при переходе от левой системы координат к правой соста-
вляющие некоторых членов суммы или равенства изменили бы свой знак
на обратный, в то время как другие члены сохранили бы его, при этом
значение суммы изменилось бы, а равенство нарушилось.
Оказывается, что и скаляры, подобно векторам, надо делить на две
группы: скаляры первого рода, пли просто скаляры,
и скаляры второго рода или псевдоскаляры. Все
величины скалярного характера, получающиеся в результате измерения
какого-либо физического объекта, например масса, температура и т. д..
являются скалярами первого рода; напротив, некоторые из выражений,
получающихся в результате математических операций над векторами,
могут изменять свой знак на обратный при переходе от левой системы
к правой или от правой системы к левой.
Такие величины называются псевдоскалярами. Так, например, ска-
лярное произведение полярного и аксиального векторов является псевдо-
скаляром.