2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.
 
 Re: Понимание сути математики
Сообщение16.08.2012, 23:23 
Заслуженный участник
Аватара пользователя


30/01/06
72407
bin в сообщении #606820 писал(а):
Не я первый - это они (Вирт и проч. (Хоар, нпр.)) напали

Они нападали не на goto, а на bowl of spaghetti.

 Профиль  
                  
 
 Re: Понимание сути математики
Сообщение16.08.2012, 23:23 
Аватара пользователя


22/09/09

1907
Еще раз вернусь к ответу на:
Someone в сообщении #606131 писал(а):
а в книге Лакатоса, к счастью, никакой философии не заметно.
приведу цитату из введения:
Цитата:
В истории мысли часто случается, что при появлении нового мощного метода быстро выдвигается на авансцену изучение задач, которые этим методом могут быть решены, в то время как все остальное игнорируется, даже забывается, а изучением его пренебрегают. Именно это как будто произошло в нашем столетии в области философии математики в результате стремительного развития метаматематики.

Предмет метаматематики состоит в такой абстракции математики, когда математические теории заменяются формальными системами, доказательства — некоторыми последовательностями хорошо известных формул, определения — «сокращенными выражениями», которые «теоретически необязательны, но зато типографически удобны».
(замеченную философию пометил жирным шрифтом).

-- Чт авг 16, 2012 23:24:43 --

Munin в сообщении #606833 писал(а):
bin в сообщении #606820 писал(а):
Не я первый - это они (Вирт и проч. (Хоар, нпр.)) напали

Они нападали не на goto, а на bowl of spaghetti.
А это не одно и тоже? ;-)

-- Чт авг 16, 2012 23:36:28 --

Окончание книги Лакатоса:
Цитата:
Учитель. Сочувствую вам. Эта последняя стадия даст важные источники пищи для нашей дискуссии. Но научное исследование «начинается и кончается проблемами». (Покидает классную комнату).
Бета. Но вначале у меня не было проблем! А теперь у меня нет ничего, кроме проблем!
Не всякому первокурснику это понять. Т.о., если кто только на первом курсе эту книгу читал - стоит перечитать.

-- Чт авг 16, 2012 23:41:11 --

И еще про GOTO: см. статью "GOTO" в рувики:
Цитата:
Оператор GOTO в языках высокого уровня является объектом критики, поскольку чрезмерное его применение приводит к созданию нечитаемого «спагетти-кода». Впервые эта точка зрения была отражена в статье Эдсгера Дейкстры «Доводы против оператора GOTO», который заметил, что качество программного кода обратно пропорционально количеству операторов GOTO в нём. Статья приобрела широкую известность как среди теоретиков, так и среди практиков программирования, в результате чего взгляды на использование оператора GOTO были существенно пересмотрены. В своей следующей работе Дейкстра обосновал тот факт, что для кода без GOTO намного легче проверить формальную корректность.

Код с GOTO трудно форматировать, так как он может нарушать иерархичность выполнения (то есть парадигму структурного программирования), и потому отступы, призванные отображать структуру программы, не всегда могут быть выставлены правильно. GOTO также аннулирует многие возможности компилятора по оптимизации управляющих структур.

 Профиль  
                  
 
 Re: Понимание сути математики
Сообщение17.08.2012, 00:34 
Заслуженный участник
Аватара пользователя


30/01/06
72407
bin в сообщении #606834 писал(а):
А это не одно и тоже?

В очередной раз понятно, какой вы "специалист"... Специалист по здорованию за руку со знаменитостями.

 Профиль  
                  
 
 Re: Понимание сути математики
Сообщение17.08.2012, 00:45 
Аватара пользователя


22/09/09

1907
Munin в сообщении #606847 писал(а):
bin в сообщении #606834 писал(а):
А это не одно и тоже?

В очередной раз понятно, какой вы "специалист"... Специалист по здорованию за руку со знаменитостями.
Спасибо за ответ. А Вы посмотрели цитату из вики (она чуть ниже)? Адресуйте Ваши слова и ко всем авторам Википедии ;-)

(Оффтоп)

Со знаменитостями я не только здороваюсь, но и работы совместные делаю. Но и в том, чтобы сказать "здрасте", уважаемому мной человеку, не вижу ничего плохого, даже, если и не знаменитость. Если Вы видете, то объясните пожалуйста.

 Профиль  
                  
 
 Re: Понимание сути математики
Сообщение17.08.2012, 09:27 
Админ форума
Аватара пользователя


19/03/10
8952
 ! 
Munin в сообщении #606847 писал(а):
В очередной раз понятно, какой вы "специалист"... Специалист по здорованию за руку со знаменитостями.
Munin, замечание за личный выпад.

 Профиль  
                  
 
 Re: Понимание сути математики
Сообщение17.08.2012, 10:20 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
    bin в сообщении #606852 писал(а):
    А Вы посмотрели цитату из вики (она чуть ниже)?
    Обсуждалось структурное программирование, а не оператор goto. Вы не хотите процитировать статью о структурном программировании из той же Википедии?

    Википедия писал(а):
    Структу́рное программи́рование — методология разработки программного обеспечения, в основе которой лежит представление программы в виде иерархической структуры блоков. Предложена в 70-х годах XX века Э. Дейкстрой, разработана и дополнена Н. Виртом.

    В соответствии с данной методологией

    1. Любая программа представляет собой структуру, построенную из трёх типов базовых конструкций:
      последовательное исполнение — однократное выполнение операций в том порядке, в котором они записаны в тексте программы;
      ветвление — однократное выполнение одной из двух или более операций, в зависимости от выполнения некоторого заданного условия;
      цикл — многократное исполнение одной и той же операции до тех пор, пока выполняется некоторое заданное условие (условие продолжения цикла).
    В программе базовые конструкции могут быть вложены друг в друга произвольным образом, но никаких других средств управления последовательностью выполнения операций не предусматривается.

    2. Повторяющиеся фрагменты программы (либо не повторяющиеся, но представляющие собой логически целостные вычислительные блоки) могут оформляться в виде т. н. подпрограмм (процедур или функций). В этом случае в тексте основной программы, вместо помещённого в подпрограмму фрагмента, вставляется инструкция вызова подпрограммы. При выполнении такой инструкции выполняется вызванная подпрограмма, после чего исполнение программы продолжается с инструкции, следующей за командой вызова подпрограммы.

    3. Разработка программы ведётся пошагово, методом «сверху вниз».


    bin в сообщении #606852 писал(а):
    Адресуйте Ваши слова и ко всем авторам Википедии
    Википедию мы, вообще говоря, не уважаем. Именно из-за авторов: писать здесь может кто угодно, и порой хорошую статью, написанную специалистом, сменяет бред безграмотного альтернативщика.

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 19:54 
    Аватара пользователя


    22/09/09

    1907
    Someone в сообщении #606934 писал(а):
    Вы не хотите процитировать статью о структурном программировании из той же Википедии?
    Хочу: чуть ниже в этой статье:
    Цитата:
    Наиболее сильной критике со стороны разработчиков структурного подхода к программированию подвергся оператор GOTO (оператор безусловного перехода), имевшийся тогда почти во всех языках программирования.


    -- Пт авг 17, 2012 20:12:46 --

    При этом можно отметить, что в 1974 вышла известная статья Д. Кнута "Structured Programming with Goto Statements", однако структурное программирование (м.б. и не совсем строго) часто продолжают называть "Goto less programming". Т.к. принцип избегать Goto, где только возможно, остается важнейшим принципом структурного программирования. Нпр., в статье "Оценка языка программирования Паскаль" Н. Вирт настоятельно рекомендует использовать для обучения подмножество языка, не содержащего Goto.

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 20:34 


    25/02/12
    6
    Не знаю, насколько это то, что ты ищешь, но мне в своё время было очень интересно прочесть главу "Почему исчисления логики и арифметики применимы к реальности?" из книги Поппера "Предположения и опровержения".

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 21:43 
    Заслуженный участник
    Аватара пользователя


    23/07/05
    17976
    Москва
    bin в сообщении #607116 писал(а):
    Someone в сообщении #606934 писал(а):
    Вы не хотите процитировать статью о структурном программировании из той же Википедии?
    Хочу: чуть ниже в этой статье:
    Цитата:
    Наиболее сильной критике со стороны разработчиков структурного подхода к программированию подвергся оператор GOTO (оператор безусловного перехода), имевшийся тогда почти во всех языках программирования.
    И что? Вы с кем разговариваете и кому возражаете? Мне, что ли? Перечитайте то место в моём сообщении, где я пишу о структурном программировании. Я разве говорил, что оператор goto следует использовать как можно чаще?
    И сравните то, что Вы писали о сути структурного программирования, с тем, что написано в Википедии. И поймите, что критика оператора goto вторична, она следует из цели структурного программирования, а не является его сутью.

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 21:51 
    Заслуженный участник
    Аватара пользователя


    30/01/06
    72407

    (Оффтоп)

    Someone
    bin не в том возрасте, чтобы надеяться его переубедить...

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 22:27 
    Аватара пользователя


    22/09/09

    1907

    (Оффтоп)

    Someone в сообщении #607132 писал(а):
    критика оператора goto вторична, она следует из цели структурного программирования, а не является его сутью
    А я говорил, что сутью? Где? ;-)

    -- Пт авг 17, 2012 22:29:33 --

    Someone в сообщении #607132 писал(а):
    Вы с кем разговариваете и кому возражаете?
    Я разговариваю с сообществом :D

    -- Пт авг 17, 2012 22:32:04 --

    Someone в сообщении #607132 писал(а):
    И сравните то, что Вы писали о сути структурного программирования, с тем, что написано в Википедии.
    Не понял, а до того Вы написали:
    Someone в сообщении #606934 писал(а):
    Википедию мы, вообще говоря, не уважаем. Именно из-за авторов: писать здесь может кто угодно, и порой хорошую статью, написанную специалистом, сменяет бред безграмотного альтернативщика.
    Так уважаете или нет? ;-)


    -- Пт авг 17, 2012 22:38:43 --

    Откуда в вики такое утверждение?:
    Someone в сообщении #606934 писал(а):
    Разработка программы ведётся пошагово, методом «сверху вниз»
    Надо будет там (в вики) шаблон "нет АИ" поставить! Спасибо за сигнал. :-) А вот в учебнике Грогоно по Паскалю, целая глава, где и «сверху вниз» и "снизу вверх" расссмотрены - и результаты соответсвуют принципам структурного прогр. BTW на практике зачастую применяют смешанную технику: «сверху вниз» + "снизу вверх".

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 22:58 
    Заслуженный участник
    Аватара пользователя


    23/07/05
    17976
    Москва
    bin в сообщении #606580 писал(а):
    Такого вывода в книге нет: "с почётом похоронить...никогда ей не пользоваться... упечь в психушку".
    Попробовал бы он это явно написать. Но атмосфера книги именно такая. И про безумие математиков он говорит.

    bin в сообщении #606580 писал(а):
    Можно и снизу вверх.
    Нет, именно сверху вниз. Хотя, разумеется, программу, в том числе и хорошо структурированную, можно написать многими способами.
    bin в сообщении #606580 писал(а):
    Но проще и быстрее оказалось обходиться без этого оператора, поэтому технологию структурного программирования и называли "программированием без goto".
    На самом деле goto не исчезает, а прячется в управляющих структурах, если они на это способны. А если не способны, то придётся писать его явным образом, придерживаясь правил структурного программирования.

    bin в сообщении #606580 писал(а):
    Конечно же не все так просто. Поэтому в Виртовском Паскале был оставлен goto, был оставлен и в стандартах, хотя в расширениях типа turbo Pascal (Borland) были предложены и механизмы типа exit для избежания goto.
    exit - это тот же goto, только без явной метки, и его использование нарушает правило структурного программирования: каждый блок должен иметь один вход и один выход. А exit - это выход из середины блока. Аналогичную роль играют в некоторых языках операторы break и continue. Этих операторов можно избежать, используя соответствующим образом стандартные для структурного программирования структуры.

    bin в сообщении #606582 писал(а):
    При поверхностном взгляде многое можно попытаться назвать простым backtracking-ом, не задумываясь о том, что в данном алгоритме всегда происходит отсечение слишком многих ветвей дерева решений.
    Разумеется. Если бы не происходило, то теоремы, доказанные за всю историю математики, мы пересчитывали бы по пальцам. В то время как реально их, я думаю, миллионы. Вы хотите сказать, что у Лакатоса сформулированы правила отсечения? Да ни в коем случае. Эффективных правил не существует.

    -- Пт авг 17, 2012 23:58:30 --

    bin в сообщении #606820 писал(а):
    mserg в сообщении #606665 писал(а):
    Формализация дает возможности «компьютерного» использования математического аппарата
    А здесь неубедительно! Чихать математикам на компы, особенно тем, кто компов не застал. Да и теперь многим "чистым" математикам компы нужны только как пишущая машинка (с TeX функциями) и чтобы в сетку залезть. ;-)
    А что ещё "чистый" математик может получить от компьютера? Доказывать интересные теоремы компьютеры не умеют. Но, по крайней мере, формализация теории делает возможным использование компьютеров для доказательства теорем. А без формализации об этом и думать нельзя. Правда, существуют программы, которые могут проверять доказательства. Но, чтобы воспользоваться этой программой, нужно записать доказательство на специальном языке, который ещё изучить надо...

    bin в сообщении #606820 писал(а):
    mserg в сообщении #606665 писал(а):
    Адекватность реальному миру – математический аппарат, по крайней мере, на низовом уровне должен позволять описывать реальный мир.
    ИМХО это мечты :-( Современная физика с богатым мат. аппаратом и то реальный мир цельно описать не может. Поэтому тратит миллиарды евро на коллайдеры в несбыточной надежде открыть "частицу бога", которая всем физикам вернет веру в торжество науки :D (хотя бы на время, пока другие частицы не откроют, которые опять картину порушат).
    Господи, какой бред...

    bin в сообщении #606820 писал(а):
    mserg в сообщении #606665 писал(а):
    Из-за высокого уровня разделения труда люди не видят целостной картины мира.
    Полностью согласен!
    Ну, целостную картину мира и ответы на все вопросы дают религия и "философия". Они совершенно точно знают, как должен быть устроен мир. А если теория относительности не соответствуют "философии", то это потому, что теория относительности - это буржуазная лженаука. (Мне не хочется употреблять термин "философия" без кавычек, так как есть настоящая философия, которая занимается своими вопросами и не лезет в чужую область.)

    bin в сообщении #606820 писал(а):
    mserg в сообщении #606665 писал(а):
    Не понимая места приложения своей работы, люди начинают выдумывать всякие смыслы, которых нет. Далее «бесхозные» математики начинают выдумывать всякую формалистическую хрень, которая с большой вероятностью отправится в помойное ведро. Другие начинают это поносить, также не понимая применение тех или работ.
    Верно! Об этом и пишет Клайн (см. выше). ИМХО нельзя запретить "выдумывать всякую формалистическую хрень", но эти бы силы, да в мирных целях: хотя бы на 50% ;-)
    Вы оба вместе с Клайном и Лакатосом не понимаете, что такое формальная теория, и зачем она нужна.

    bin в сообщении #606820 писал(а):
    mserg в сообщении #606665 писал(а):
    Скорее всего, кризиз все же есть.
    Википедия утверждает, что кризис был (см. "Кризис математических основ", лучше уйти по интервики на англовики - там подробнее и куча источников). В рувики сказано:
    Цитата:
    Кризис все еще не пройден, но он затух.
    - ИМХО фраза типа "помиловать нельзя повесить", т.о. ИМХО кризис продолжается.
    Глупости это. Просто громкие слова для привлечения внимания. Математики здесь уже давно разобрались, а "философы", не понимая сути дела, продолжают сто лет жевать одну и ту же жвачку.

    bin в сообщении #607143 писал(а):
    А я говорил, что сутью? Где?
    Вот начало нашего диалога.
    bin в сообщении #606124 писал(а):
    в программинге свершилось три революции: структурная (без goto) ...
    Someone в сообщении #606262 писал(а):
    Смысл структурного программирования - вовсе не в запрете оператора goto.
    bin в сообщении #606493 писал(а):
    А в чем? Просветите, пожалуйста.
    А далее Вы всё время пытаетесь доказать, что я говорю ерунду, а главное - запретить goto.

    bin в сообщении #606580 писал(а):
    А если говорить серьезно, то Клайн говорит, что математикам нужно быть ближе к "народу" (т.е. к физикам, химикам, биологам и прочим), так как они были близки в прошлом. Очень здравая идея. Помню, нпр., цирк, когда в ведущий НИИ РАН по химии устраивали на с.н.с. математика. Нужно было утвердить это на ученом совете. Ему задают вопросы, а он: "химии не знал, не знаю и знать не хочу!"
    Особенности отдельных математиков не являются проблемами математики, так что это к делу не относится. Я, например, с удовольствием сотрудничал и с физиками, и с химиками, и с врачом. Никакой самоизоляции в математике нет. Я не знаю ни одной области математики, которая была бы изолирована от остальных. Все они так или иначе связаны применяемыми методами и взаимным использованием. Прикладная математика также не является изолированной от "чистой".

    bin в сообщении #606834 писал(а):
    Еще раз вернусь к ответу на:
    Someone в сообщении #606131 писал(а):
    а в книге Лакатоса, к счастью, никакой философии не заметно.
    приведу цитату из введения:
    Цитата:
    В истории мысли часто случается, что при появлении нового мощного метода быстро выдвигается на авансцену изучение задач, которые этим методом могут быть решены, в то время как все остальное игнорируется, даже забывается, а изучением его пренебрегают. Именно это как будто произошло в нашем столетии в области философии математики в результате стремительного развития метаматематики.

    Предмет метаматематики состоит в такой абстракции математики, когда математические теории заменяются формальными системами, доказательства — некоторыми последовательностями хорошо известных формул, определения — «сокращенными выражениями», которые «теоретически необязательны, но зато типографически удобны».
    (замеченную философию пометил жирным шрифтом).
    Да, на введение я внимания не обратил. А в нём Лакатос пишет ерунду. Он плохо себе представляет, что такое формальная теория, метатеория, зачем они нужны. Ему мерещится сррррашное и ужжжжасное чудовище - формализация. А Вы за ним и за Клайном эту ерунду повторяете.

    (Munin)

    Munin в сообщении #607135 писал(а):

    (Оффтоп)

    Someone
    bin не в том возрасте, чтобы надеяться его переубедить...
    Да, похоже, что безнадёжен. Но у меня тоже возраст не маленький, а меня убедить вполне можно.

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 23:03 


    22/01/11
    309
    Someone в сообщении #607151 писал(а):
    Прикладная математика также не является изолированной от "чистой".


    :D :D
    Это что-то из серии разделения математики на высшую и НЕ высшую :)

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 23:32 
    Заслуженный участник
    Аватара пользователя


    30/01/06
    72407

    (Оффтоп)

    Someone в сообщении #607151 писал(а):
    Но у меня тоже возраст не маленький

    Извините, вовсе не хотел за возраст задеть! :-) Скорее, я подразумевал что-то типа "чувствуются возрастные изменения". Скажем, и лысеют к 60 не все поголовно :-)

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 23:48 
    Заслуженный участник


    09/08/09
    3438
    С.Петербург
    Несколько слов о структурном программировании и структурном подходе: в одной из первых изданных у нас книг на эту тему (Хьюз Дж., Мичтом Дж. Структурный подход к программированию) эти два понятия разделяются. Структурное программирование -- это программирование с помощью базовых структур (следование, развилка, цикл), а структурный подход -- это подход к программированию, в основе которого лежат нисходящая разработка, структурное программирование и сквозной структурный анализ.

     Профиль  
                      
    Показать сообщения за:  Поле сортировки  
    Начать новую тему Ответить на тему  [ Сообщений: 104 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.

    Модераторы: Модераторы Математики, Супермодераторы



    Кто сейчас на конференции

    Сейчас этот форум просматривают: нет зарегистрированных пользователей


    Вы не можете начинать темы
    Вы не можете отвечать на сообщения
    Вы не можете редактировать свои сообщения
    Вы не можете удалять свои сообщения
    Вы не можете добавлять вложения

    Найти:
    Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group