Когда Вы думаете о некоей "стандартной" модели, Вы ведь её не имеете фактически, Вы только верите, что она есть. Вдруг та модель, с которой Вы работаете фактически, нестандартная? Отличить стандартную модель от нестандартной, располагая только интерпретацией системы аксиом Пеано, нельзя.
Когда я работаю с натуральным рядом 1, 2, 3, ... я вовсе не думаю о модели аксиом Пеано на языке логики первого порядка.
Истинность утверждения, что уравнение
не имеет решений в натуральных числах не зависит от аксиом Пеано.
Это утверждение можно доказать исходя и из другой системы аксиом.
А если взять систему аксиом в которой это утверждение ложно, то эти аксиомы определяют не натуральные числа, а другие (например, рациональные).