To eposЯ должен извиниться за долгие рассуждения перед ответом. Вы проделали хорошую работу и я рад что вы потратили свои силы и время. В результате мы получили список тех вопросов, которые возникнут у любого математика, если его заставлять признать неформализуемое. Другие скорее игнорировали тему, чем пытались честно понять о чем речь. Но пришло время изменить направление обсуждений, тем более что
Circiter любезно намекает:
2
robezЦитата:
признать возможность разных результатов у разных исследователей если только они этого захотят.
Опять вы за свое. :) Ok, давайте с немного более простой ситуации начнем.
To
eposЕсли допустить существование логики, законы которой сформулировать нельзя, но за выполнением которого следит подсознание
Мысль, конечно, интересная, но какое отношение это имеет к "логике"? Ясно, что человек иногда способен к выводам, которые ни в какую ранее описанную логику не укладываются, однако задним числом могут быть осмыслены и признаны верными. И понятно, что существенными для получения таких выводов являются бессознательные процессы. Но логика-то нужна не для этого! Она просто является описанием неких общепринятых (т.е согласованных между говорящим и слушающим) правил вывода.
Для того чтобы разрулить ситуацию, когда два человека не понимают друг друга как мы с вами (или человек не понимает сам себя, но это уже другая история). Не понимая они все равно могут двигать науку вперед. У нас нет точек соприкосновения кроме элементарных и потому не может быть уверенности, что понимание когда-либо наступит. Потому, рекомендация сидеть и ждать меня не устраивает, не устраивает и продолжение дискуссии в том же виде. Не понимать друг друга вполне нормально и естественно, а значит должны быть правила поведения в таких ситуациях. Например, когда мои идеи отбрасывались без серьезного рассмотрения я просто прекратил их излагать и сосредоточился на указании ошибок в рассуждениях моих оппонентов. Это было единственное, что имело смысл. В результате я показал невозможность соблюсти ваши требования в случае когда мы хотим ввести в обращение неформализуемый объект, а с вашей стороны мы получили список причин которые мешают подобному нововведению. Великолепная работа. Теперь, переходя к обучению использования неформализуемых объектов в математике, мы можем испытать все перечисленные вами ситуации и посмотреть, почему они не работают.
Повторим (немного сумбурно) основные моменты ваших (и не только) возражений (список не полный):
Цитата:
Circiter
Причем это никак не противоречит возможности придумывать абстрактные символы и манипулировать ими.
Например, обозначить «Х» - неформализуемый объект и вперед.
Цитата:
Circiter
… И почему-то по-прежнему не видно никаких особых пределов для познания. Даже "противоречивые" утверждения (имеется ввиду такие, которые об одном и том же объекте дают разные сведения; подозреваю, что вы слово противоречивость именно таким смыслом наделяете) тоже не ставят непреодолимых преград перед задачей их описания. … Каждое такое противоречие разрешается после вложения фактов в более общую теорию.
Любое противоречие логически объяснимо в принципе (познаваемо).
Цитата:
epos Бессмысленно пытаться пристягнуть её (логику) для передачи чего-то бессознательного, что Вы почему-то с таким упорством пытаетесь сделать..
Теорема любви eposa не может быть сформулирована ни epos, ни robez ни кем-то еще.
Цитата:
То, что я вижу в Вашем посте выше, с моей точки зрения и есть "описание словами". … Этой фразой Вы уже "как-то" описали эти вещи.
Все что говорит robez на эту тему относиться или нет к неформализуемому? Ведь неформализуемого словами описать нельзя, а он тут столько слов наговорил.
Цитата:
Поэтому я выше и говорил: Если хотите кому-то что-то сообщить, то выбирайте тот синтаксис, на который слушатель уже "настроен". Так Вы повысите шансы быть правильно понятым.
Выразить можно все, нужно только уточнить терминологию.
Цитата:
Видите ли, в математике есть масса вещей, которые могут быть определены в одном смысле, но не могут быть описаны в каком-то другом смысле.
Любые ограничения снимаются в более общем или другом случае.
Цитата:
Бессмысленно говорить об этой "ситуации", поскольку Вы можете утверждать невозможность получения "некой формулировки" только после того, как эту "некую формулировку" получите, что есть абсурд.
Неформализуемый объект должен быть описан в рамках аксиоматического подхода и одновременно не дожжен допускать этого.
Цитата:
про нарушение закона тождества что-то было
Х не есть Х, если Х- это неформализуемый объект. Вообще о нарушении любых законов – тождества, противоречия, и т.д. и т.п.
Цитата:
Так что вы не правы настаивая на потенциальной возможности когда либо получить математическую формулировку чувств если у вас нет в этом полной уверенности.
Я не "настаиваю" на потенциальной возможности этого, я её всего лишь навсего "допускаю". И обратите внимание, что обязательным условием для этого является полное осознание (как высказывающимся, так и слушателем) того, в чём заключается данное чувство. Настолько полное, что слушатель оказывается способным управлять данным чувством, прилагая сознательное усилие.
Я так понимаю, что этот момент является ключевым в спорах вокруг конструктивизма. “Допуск” существования математической теоремы любви epos позволяет вам логически рассуждать об этом, но одновременно запрещает существование чувств для которых математичексая формулировка невозможна. Конструктивисты могут лишь отказаться использовать подобные неконструктивные определения, но прийти к определению неформализуемого объекта у них не получится, так что они все равно остаются в проигрыше. А значит запрета на ваш “Допуск” у них нет и нет никаких логических противоречий и у вас после его применения. Не могу удержаться и вставить свой контр пример. Поскольку никаких разумных объяснений по поводу приемлемости такого “Допуска” кроме отсутствия противоречий вы сформулировать не можете, не можете вы также опровергнуть что любая математическая конструкция (например 2+2=4) может полностью и точно представлять всю любовь eposa в полном объеме. Поскольку работа чувств сосредоточена где-то там за пределами сознательного в подсознании, то не составляет труда выдрессировать группу подопытных так чтобы их подсознание однозначно реагировалo на эту совокупность символов, а если не хотят, то бить их высоким напряжением до полного усвоения условного рефлекса. То есть, настаивая на “Допуске” вы теряете способность различать, какая из формулировок “2+2=4” или “1+1=2” отражает любовь и отражает ли вообще. Другими словами ваш принцип неконструктивен, а потому не работает при рассмотрении реальных конструктивных объектов на предмет соответствуют ли они этому принципу или противоречат ему. Вы просто выбрали подмножество чувств для которых математика применима, но нельзя вложить такие принципы в основу всей математики. В глобальном смысле этим вы запрещаете существования существ более развитых чем человек, поскольку все в этой вселенной становится предположительно познаваемым для человека, по крайней мере дает разрешение использовать математику везде и всегда.
Думаю тут следует провести опрос населения. Кто считает, что существуют чувства выразить которые невозможно никогда ни при каком выборе символов (какое бы высокое напряжение не применялось).
1) robez – да, существуют.
Хочу сказать, пора приступать к обучению того, как пользоваться неформализуемым, без реального чувственного опыта наши разговоры ничего не дают. Только если я буду обучать, все мои требования должны соблюдаться беспрекословно. Все условия должны выполняться, иначе обсуждайте тему без меня. Таковы мои условия.
Основных принципов четыре, например первое требование - каждое математическое утверждения связывать с определенным математиком, как если бы всем раздали цветные ручки и рассматривая любую формулировку мы точно знали кто его написал. Никакой редукции цвета или изменении цвета формулировок не допускается, цвет присваивается раз и навсегда. Если математик хочет повторить результат своего коллеги он должен сам сформулировать все что ему нужно, хотя построения фразы из частей разного цвета не запрещается как если бы математики помогали друг другу. Мы должны только однозначно определять хозяина любой конструкции только и всего.
Никто ни разу не выполнил данное условие, когда я рассматривал опыт с двумя участниками. Если так будет и дальше я буду расценивать это как отказ обучаться. В таком случае я ничем помочь не могу – разбирайтесь сами. Epos привел достаточно возражений против формализуемого и мы должны этим воспользоваться или просто прекратить спор.
Задача будет состоять из построения физической модели реального ненаблюдаемого явления, проверки возникновения синтаксических проблем при столкновении с ним и рассмотрении тех приемов, которые позволят рассуждать о таких экспериментах чисто абстрактно только при помощи математики. Потом мы сможем проверить все заявления eposa и решить имеют они право на существование или нет.