Всегда полагал, что понятие степени числа - нечто более общее, чем понятие корня из числа (здесь и далее речь о действительных числах). В моей картине мира корни - частный случай степени (когда показатель дробный и равен
![$1/n$ $1/n$](https://dxdy-03.korotkov.co.uk/f/2/d/7/2d77e685bfa7e0c249fa2e10b3d6767782.png)
). Стандартный порядок изложения данного вопроса следующий. Сначала определяют понятие корня из числа, далее с помощью корня вводят определение степени с дробным показателем. Все свойства дробных степеней доказывают через свойства корней. В связи с этим вопрос: можно ли каким-то образом определить степень числа сразу, без корней, доказать свойства степеней (произведение, частное, степень в степени, произведение в степени, частное в степени), а потом невзначай "заметить", что корень - это просто степень с показателем
![$1/n$ $1/n$](https://dxdy-03.korotkov.co.uk/f/2/d/7/2d77e685bfa7e0c249fa2e10b3d6767782.png)
, а раз свойства для степеней мы доказали, то свойства корней доказывать не надо, т.к. они напрямую вытекают из доказанных ранее свойств степеней.