2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5  След.
 
 все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение22.08.2011, 02:04 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
Имеется следующая задача:
Описать параметрически все кривые в 4-мерном псевдоевклидовом пространстве, у которых все кривизны являются константами.
В Nмерном пространстве кривизин N-1.Значит,в 4-х мерном должны быть заданы 3 кривизины:
(1я кривизина ,2я кривизина – кручение и ещё 3я кривизина)..
Итак, можно ли решить эту задачу ?

 Профиль  
                  
 
 Re: все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение22.08.2011, 10:19 
Заслуженный участник
Аватара пользователя


22/01/11
2641
СПб
Почему нет?

Вроде как такие кривые -- решения некоторой системы л.д.у. с постоянными коэффициентами

 Профиль  
                  
 
 Re: все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение22.08.2011, 10:26 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
alcoholist в сообщении #476930 писал(а):
Почему нет?

Вроде как такие кривые -- решения некоторой системы л.д.у. с постоянными коэффициентами

Вот и вопрос - какие д.у. нужны для 4-мерного псевдоевклидова пространства ?

 Профиль  
                  
 
 Re: все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение22.08.2011, 14:22 
Заслуженный участник


27/04/09
28128
Надо взять формулы для кривизн и приравнять к константам. Продифференцируем каждое и получим три нужных уравнения. Не так?

 Профиль  
                  
 
 Re: все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение22.08.2011, 14:30 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
arseniiv в сообщении #476993 писал(а):
Надо взять уравнения кривизн и приравнять к константам. Продифференцируем каждое и получим три нужных уравнения. Не так?

Так.
Вопрос только в том , что мне неизвестны корректные уравнения кривизин
для 4-х мерного псевдоевклидова пространства.
Конечно,можно взять уравнения для 4-х мерного евклидова пространства, сделать одно измерение чисто мнимым и решать.Но я не уверен в корректности такого подхода.

 Профиль  
                  
 
 Re: все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение22.08.2011, 14:44 
Заслуженный участник


27/04/09
28128
Псевдоевклидовость пропустил мимо ушей. :oops: А разве нигде не описываются формулы, включающие в себя метрику?

 Профиль  
                  
 
 Re: все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение22.08.2011, 16:06 
Заслуженный участник


13/12/05
4604
См. Рашевский П. К. Риманова геометрия и тензорный анализ $\S 100$.
Там выведены формулы Френе для кривой в (псевдо)евклидовом пространстве
$$\begin{array}{llr} \dfrac{d\nu_0}{ds}=\quad \quad \quad\quad   k_1\nu_1\\
\dfrac{d\nu_1}{ds}=\pm k_1\nu_0+k_2\nu_2\\
\dfrac{d\nu_2}{ds}=\pm k_2\nu_1+k_3\nu_3\\
\dfrac{d\nu_3}{ds}=\pm k_3\nu_2\end{array}$$
Здесь, $\nu_0,\nu_1,\nu_2,\nu_3$ -- орты сопровождающего репера, $k_1,k_2,k_3$ -- кривизны, $s$ -- натуральный параметр. Знак $\pm$ в уравнениях выбирается в зависимости от того одноименные реперы $\nu_p$, $\nu_{p-1}$ или нет. Если один из них единичный, а другой -- мнимоединичный, то берётся $+$; в противном случае берется $-$.

Для описания всех кривых постоянной кривизны, по-моему, достаточно решить эту систему при четырёх конкретных начальных условиях, соответствующих тому, какой из векторов репера лежит внутри светового конуса. Остальные кривые получатся из найденных при помощи движения.

 Профиль  
                  
 
 Re: все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение22.08.2011, 17:23 
Заслуженный участник
Аватара пользователя


22/01/11
2641
СПб
Ну, естественно, надо уравнения Френе решать, а не уравнения кривизн дифференцировать:)

 Профиль  
                  
 
 Re: все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение23.08.2011, 06:42 
Заслуженный участник


13/12/05
4604
Собственные значения страшные. Например, у матрицы $\begin{pmatrix}0 & k_1 & 0 & 0 \\-k_1 & 0 & k_2&0 \\0 & -k_2 & 0&k_3\\ 0 &0& k_3& 0 \end{pmatrix}$ Вольфрам альфа выдаёт$$
\lambda_{1,2} = \pm\dfrac{\sqrt{-k_1^2-k_2^2+k_3^2-\sqrt{4 k_1^2 k_3^2+(k_1^2+k_2^2-k_3^2)^2}}}{\sqrt 2} $$
$$
\lambda_{3,4} = \pm\dfrac{\sqrt{-k_1^2-k_2^2+k_3^2+\sqrt{4 k_1^2 k_3^2+(k_1^2+k_2^2-k_3^2)^2}}}{\sqrt 2} 
$$
И непонятно еще, какого знака будут подкоренные выражения.

 Профиль  
                  
 
 Re: все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение23.08.2011, 08:29 
Заслуженный участник
Аватара пользователя


22/01/11
2641
СПб
А по-моему, красивые с.з. Надо только правильные комбинации кривизн за новые параметры принять... Про решение с.л.д.у. первого порядка с постоянными коэффициентами известно, мне кажется, всё:) Матричная экспонента, фундаментльная матрица и т.д.

 Профиль  
                  
 
 Re: все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение23.08.2011, 10:55 
Заслуженный участник
Аватара пользователя


15/10/08
12501
Особо печальный случай - изотропные кривые. А ведь среди них тоже есть с постоянными в каком-то смысле кривизнами. Может ограничиться только времениподобными?

 Профиль  
                  
 
 Re: все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение23.08.2011, 18:35 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
Утундрий в сообщении #477114 писал(а):
Особо печальный случай - изотропные кривые. А ведь среди них тоже есть с постоянными в каком-то смысле кривизнами. Может ограничиться только времениподобными?

Да, вопросов тут масса.Изотропные кривые желательно рассмотреть все, придётся мне помучиться.
Кстати,подмножеством 4-х мерного псевдоесклидова пространства является 3-х мерное евклидово пространство.Там такие линии с пост. кривизинами - это прямые, окружности и обыкновенные винтовые линии.Будут ли они такими для 4-х мерного евклидова пространства? Мне кажется, что будут.Сама же псевдоевклидовость просто укажет закон движения точки по этим линиям.
Ещё вопрос в том, относительно каких преобразований инвариантны линии с постоянными кривизинами в 4-х мерном псевдоевклидовом пространстве ?
Мне кажется, что такие преобразования - это дробно-линейные преобразования...Но прав ли я ?

 Профиль  
                  
 
 Re: все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение23.08.2011, 19:43 
Заслуженный участник


27/04/09
28128
PSP в сообщении #477226 писал(а):
Кстати,подмножеством 4-х мерного псевдоесклидова пространства является 3-х мерное евклидово пространство.
Но ведь у него есть и другие подпространства! Например, 3-х мерное псевдоевклидово, все точки которого имеют $x = 0$ и различные $y$, $z$, $t$.

 Профиль  
                  
 
 Re: все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение23.08.2011, 22:42 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
arseniiv в сообщении #477238 писал(а):
PSP в сообщении #477226 писал(а):
Кстати,подмножеством 4-х мерного псевдоесклидова пространства является 3-х мерное евклидово пространство.
Но ведь у него есть и другие подпространства! Например, 3-х мерное псевдоевклидово, все точки которого имеют $x = 0$ и различные $y$, $z$, $t$.

Есть.Это должны быть модели с траекториями "прямая" и "окружность" с некими законами движения точки по ним.Их тоже любопытно было бы исследовать...

Есть ещё один момент:
"Приняв в качестве определения искомой функции линейное дифференциальное уравнение с алгебраическими коэффициентами, Пуанкаре пришел к первому важному результату: функция, являющаяся решением такого уравнения, должна оставаться неизменной при дробно-линейных преобразованиях переменной величины, от которой она зависит."
Где более конкретно про это можно почитать?
И относится ли это к системам д.у ?
Далее.
Возьмём класс дифференциальных уравнений для линий с постоянными кривизинами.
(это ведь линейные дифференциальные уравнения с алгебраическими коэффициентами)
Если "функция, являющаяся решением такого уравнения, должна оставаться неизменной при дробно-линейных преобразованиях переменной величины, от которой она зависит", то какие преобразования допустимы для самой функции,чтобы она оставалась хотя бы решением уравнения такого же класса?
Тоже дробно-линейные ?

 Профиль  
                  
 
 Re: все кривые в 4-мерном псевдоевклидовом пространстве
Сообщение25.08.2011, 17:05 
Заслуженный участник
Аватара пользователя


22/10/05

2601
Москва,физфак МГУ,1990г
Padawan в сообщении #477008 писал(а):
См. Рашевский П. К. Риманова геометрия и тензорный анализ $\S 100$.
Там выведены формулы Френе для кривой в (псевдо)евклидовом пространстве
$$\begin{array}{llr} \dfrac{d\nu_0}{ds}=\quad \quad \quad\quad   k_1\nu_1\\
\dfrac{d\nu_1}{ds}=\pm k_1\nu_0+k_2\nu_2\\
\dfrac{d\nu_2}{ds}=\pm k_2\nu_1+k_3\nu_3\\
\dfrac{d\nu_3}{ds}=\pm k_3\nu_2\end{array}$$
Здесь, $\nu_0,\nu_1,\nu_2,\nu_3$ -- орты сопровождающего репера, $k_1,k_2,k_3$ -- кривизны, $s$ -- натуральный параметр. Знак $\pm$ в уравнениях выбирается в зависимости от того одноименные реперы $\nu_p$, $\nu_{p-1}$ или нет. Если один из них единичный, а другой -- мнимоединичный, то берётся $+$; в противном случае берется $-$.

Для описания всех кривых постоянной кривизны, по-моему, достаточно решить эту систему при четырёх конкретных начальных условиях, соответствующих тому, какой из векторов репера лежит внутри светового конуса. Остальные кривые получатся из найденных при помощи движения.

Решил эту систему в Мапле..Во тока наглядно представить те могу..как это выглядит....
Если кто Мапле владеет, может, поможет кто ?
Вот тут решение :

(Оффтоп)

restart;
sys := [diff(x(s),s) = k[1]*y(s),diff(y(s),s) = k[1]*x(s)+k[2]*z(s),diff(z(s),s) = k[2]*y(s)+k[3]*t(s),diff(t(s),s)=k[3]*z(s) ];
[ d d
[--- x(s) = k[1] y(s), --- y(s) = k[1] x(s) + k[2] z(s),
[ ds ds

d d ]
--- z(s) = k[2] y(s) + k[3] t(s), --- t(s) = k[3] z(s)]
ds ds ]
ans1 := dsolve(sys);
/
| / 1 /
< x(s) = _C1 exp|- - \
| \ 2
\
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ \ /1 /
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| + _C2 exp|- \
/ \2
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ \ / 1 / // 2
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| + _C3 exp|- - \2 \\k[2]
/ \ 2

2 2\ / 2 2 2\\
+ k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2)

2 2 2\ \ /1 / // 2 2
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| + _C4 exp|- \2 \\k[2] + k[1]
/ \2

2\ / 2 2 2\\
+ 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2)

/
2 2 2\ \ 1 |
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s|, z(s) = --------- |
/ k[1] k[2] \
/ / /
2 | | 1 |
-k[1] |_C1 exp|- - \
\ \ 2
-2

(1/2)
/ 4 2 2 2 2 4 2 2 4\
\k[3] + 2 k[3] k[2] - 2 k[3] k[1] + k[2] + 2 k[2] k[1] + k[1] /

\ \ / /
2 2 2| | |1 |
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| + _C2 exp|- \
/ \2
-2

(1/2)
/ 4 2 2 2 2 4 2 2 4\
\k[3] + 2 k[3] k[2] - 2 k[3] k[1] + k[2] + 2 k[2] k[1] + k[1] /

\ \ / /
2 2 2| | | 1 |
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| + _C3 exp|- - \2
/ \ 2

(1/2)
/ 4 2 2 2 2 4 2 2 4\
\k[3] + 2 k[3] k[2] - 2 k[3] k[1] + k[2] + 2 k[2] k[1] + k[1] /

\ \ / /
2 2 2| | |1 |
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| + _C4 exp|- \2
/ \2

(1/2)
/ 4 2 2 2 2 4 2 2 4\
\k[3] + 2 k[3] k[2] - 2 k[3] k[1] + k[2] + 2 k[2] k[1] + k[1] /

\ \\ /
2 2 2| || 1 |
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s|| + - _C1 \
// 4
-2

(1/2)
/ 4 2 2 2 2 4 2 2 4\
\k[3] + 2 k[3] k[2] - 2 k[3] k[1] + k[2] + 2 k[2] k[1] + k[1] /

\ / /
2 2 2| | 1 |
+ 2 k[3] + 2 k[2] + 2 k[1] / exp|- - \
\ 2
-2

(1/2)
/ 4 2 2 2 2 4 2 2 4\
\k[3] + 2 k[3] k[2] - 2 k[3] k[1] + k[2] + 2 k[2] k[1] + k[1] /

\ \ /
2 2 2| | 1 |
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| + - _C2 \
/ 4
-2

(1/2)
/ 4 2 2 2 2 4 2 2 4\
\k[3] + 2 k[3] k[2] - 2 k[3] k[1] + k[2] + 2 k[2] k[1] + k[1] /

\ / /
2 2 2| |1 |
+ 2 k[3] + 2 k[2] + 2 k[1] / exp|- \
\2
-2

(1/2)
/ 4 2 2 2 2 4 2 2 4\
\k[3] + 2 k[3] k[2] - 2 k[3] k[1] + k[2] + 2 k[2] k[1] + k[1] /

\ \ /
2 2 2| | 1 |
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| + - _C3 \2
/ 4

(1/2)
/ 4 2 2 2 2 4 2 2 4\
\k[3] + 2 k[3] k[2] - 2 k[3] k[1] + k[2] + 2 k[2] k[1] + k[1] /

\ / /
2 2 2| | 1 |
+ 2 k[3] + 2 k[2] + 2 k[1] / exp|- - \2
\ 2

(1/2)
/ 4 2 2 2 2 4 2 2 4\
\k[3] + 2 k[3] k[2] - 2 k[3] k[1] + k[2] + 2 k[2] k[1] + k[1] /

\ \ /
2 2 2| | 1 |
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| + - _C4 \2
/ 4

(1/2)
/ 4 2 2 2 2 4 2 2 4\
\k[3] + 2 k[3] k[2] - 2 k[3] k[1] + k[2] + 2 k[2] k[1] + k[1] /

\ / /
2 2 2| |1 |
+ 2 k[3] + 2 k[2] + 2 k[1] / exp|- \2
\2

(1/2)
/ 4 2 2 2 2 4 2 2 4\
\k[3] + 2 k[3] k[2] - 2 k[3] k[1] + k[2] + 2 k[2] k[1] + k[1] /

\ \\
2 2 2| || 1 / 2
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s||, t(s) = ---------------- |4 k[2]
// 8 k[2] k[3] k[1] \

/
_C1 \
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ / 1 /
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) exp|- - \
\ 2
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ \ 2 /
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| - 4 k[2] _C2 \
/
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ /1 /
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) exp|- \
\2
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ \ 2 / // 2
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| + 4 k[2] _C3 \2 \\k[2]
/

2 2\ / 2 2 2\\
+ k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2)

2 2 2\ / 1 / // 2 2
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) exp|- - \2 \\k[2] + k[1]
\ 2

2\ / 2 2 2\\
+ 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2)

2 2 2\ \ 2 / // 2 2
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| - 4 k[2] _C4 \2 \\k[2] + k[1]
/

2\ / 2 2 2\\
+ 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2)

2 2 2\ /1 / // 2 2
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) exp|- \2 \\k[2] + k[1] + 2 k[1] k[3]
\2

2\ / 2 2 2\\ 2 2
+ k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2) + 2 k[3] + 2 k[2]

2\ \ 2 /
+ 2 k[1] /^(1/2) s| + 4 k[1] _C1 \
/
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ / 1 /
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) exp|- - \
\ 2
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ \ 2 /
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| - 4 k[1] _C2 \
/
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ /1 /
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) exp|- \
\2
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ \ 2 / // 2
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| + 4 k[1] _C3 \2 \\k[2]
/

2 2\ / 2 2 2\\
+ k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2)

2 2 2\ / 1 / // 2 2
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) exp|- - \2 \\k[2] + k[1]
\ 2

2\ / 2 2 2\\
+ 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2)

2 2 2\ \ 2 / // 2 2
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| - 4 k[1] _C4 \2 \\k[2] + k[1]
/

2\ / 2 2 2\\
+ 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2)

2 2 2\ /1 / // 2 2
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) exp|- \2 \\k[2] + k[1] + 2 k[1] k[3]
\2

2\ / 2 2 2\\ 2 2
+ k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2) + 2 k[3] + 2 k[2]

2\ \ /
+ 2 k[1] /^(1/2) s| - _C1 \
/
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ / 1 /
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(3/2) exp|- - \
\ 2
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ \ /
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| + _C2 \
/
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ /1 /
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(3/2) exp|- \
\2
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ \ / // 2 2
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| - _C3 \2 \\k[2] + k[1]
/

2\ / 2 2 2\\
+ 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2)

2 2 2\ / 1 / // 2 2
+ 2 k[3] + 2 k[2] + 2 k[1] /^(3/2) exp|- - \2 \\k[2] + k[1]
\ 2

2\ / 2 2 2\\
+ 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2)

2 2 2\ \ / // 2 2
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| + _C4 \2 \\k[2] + k[1]
/

2\ / 2 2 2\\
+ 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2)

2 2 2\ /1 / // 2 2
+ 2 k[3] + 2 k[2] + 2 k[1] /^(3/2) exp|- \2 \\k[2] + k[1] + 2 k[1] k[3]
\2

2\ / 2 2 2\\ 2 2
+ k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2) + 2 k[3] + 2 k[2]

2\ \\ 1 / /
+ 2 k[1] /^(1/2) s||, y(s) = - ------ |_C1 \
// 2 k[1] \
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ / 1 /
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) exp|- - \
\ 2
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ \ /
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| - _C2 \
/
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ /1 /
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) exp|- \
\2
// 2 2 2\ / 2 2 2
-2 \\k[2] + k[1] + 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3]

\\ 2 2 2\ \ / // 2 2
//^(1/2) + 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| + _C3 \2 \\k[2] + k[1]
/

2\ / 2 2 2\\
+ 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2)

2 2 2\ / 1 / // 2 2
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) exp|- - \2 \\k[2] + k[1]
\ 2

2\ / 2 2 2\\
+ 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2)

2 2 2\ \ / // 2 2
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) s| - _C4 \2 \\k[2] + k[1]
/

2\ / 2 2 2\\
+ 2 k[1] k[3] + k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2)

2 2 2\ /1 / // 2 2
+ 2 k[3] + 2 k[2] + 2 k[1] /^(1/2) exp|- \2 \\k[2] + k[1] + 2 k[1] k[3]
\2

2\ / 2 2 2\\ 2 2
+ k[3] / \k[2] + k[1] - 2 k[1] k[3] + k[3] //^(1/2) + 2 k[3] + 2 k[2]

\
2\ \\|
+ 2 k[1] /^(1/2) s|| >
//|
/
>
>
>

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 68 ]  На страницу 1, 2, 3, 4, 5  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group