Чтобы не было путаницы кинетическую энергию обозначим буквой K. Оставим букву T для обозначения периода. Среднюю по времени кинетическую энергию (при t→∞) обозначим K̅. Заметим, что она совпадает со средней за период T. Остальные обозначения: Арнольд. Математические методы классической механики, §4, пункт Г, задача третья с конца.
Рассмотрим случай, когда потенциальная энергия является однородной функцией k-ой степени. Вириальная теорема (см. Ландау, Лившиц, Механика, §10, формула 10.3) с учетом наших обозначений даёт

Вычислим площадь, заключенную внутри замкнутой фазовой кривой. Имеем следующую цепочку равенств:

Тогда

Формула, указанная в задаче, имеет место в случае гармонического осциллятора, т. е. при k=2.
Возможны иные примеры.
Рассмотрим единичную массу (шарик) между двух стенок на расстоянии единица, движущийся перпендикулярно стенкам. Удар абсолютно упругий. Трения и тяготения нет. В этом случае

Рассмотрим единичную массу (шарик), падающий с высоты h с ускорением g на плиту и отражающийся вверх после абсолютно упругого удара.
