2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 период движения по фазовой кривой
Сообщение20.12.2006, 22:29 
Привет, помогите с задачкой, пожалуйста: Пусть S(E) площадь, заключенная внутри замкнутой фазовой кривой, соответсвующей уровню энергии Е. Доказать, что период движения по этой кривой равен $T=\frac{dS}{dE}$, Мои соображения: сначала я думал что надо как-нибудь перейти от интеграла по площади к интегралу вдоль кривой (пошаманить с формулой Грина), которой уровень энегрии Е и соответсвтует и затем используя параметризацию по времени записать у этого интеграла пределы от 0 до Т, потом продифференцировать по Е подынтегральное выражение. Но ничего не получается у меня. Прошу помощи, а то начал читать Арнольда, увидел там эту задачку и не дает она мне покоя :wink:
Да зыбыл сказать - это задача, естественно, для системы с одной степенью свободы.

 
 
 
 
Сообщение24.12.2006, 19:38 
Ну хоть какие-нибудь соображения есть? :roll:

 
 
 
 Re: период движения по фазовой кривой
Сообщение24.12.2006, 19:48 
Аватара пользователя
Zo писал(а):
Привет, помогите с задачкой, пожалуйста: Пусть S(E) площадь, заключенная внутри замкнутой фазовой кривой, соответсвующей уровню энергии Е. ..

Я знаю, что такое фазовая кривая , но вот про уровни энергии для дифференциальных уравнений не слыхал. Хорошо бы сначала увидеть контекст, а потом пытаться помочь.

 
 
 
 Re: период движения по фазовой кривой
Сообщение24.12.2006, 22:06 
Brukvalub писал(а):
Zo писал(а):
Привет, помогите с задачкой, пожалуйста: Пусть S(E) площадь, заключенная внутри замкнутой фазовой кривой, соответсвующей уровню энергии Е. ..

Я знаю, что такое фазовая кривая , но вот про уровни энергии для дифференциальных уравнений не слыхал. Хорошо бы сначала увидеть контекст, а потом пытаться помочь.

В данном случае Е=T+U, где Т - кинетическая энергия, U - потенциальная, E - первый интеграл уравнения $\ddot x=f(x)$, $T=\frac{1}{2}\dot x^2$, $U(x)=-\int\limit_{x_0}^{x} f(\xi)d\xi$. Эта задачка из книги Арнольда "Мат. методы классической механики".
Подскажите, пожалуйста, идею решения :roll:

 
 
 
 
Сообщение25.12.2006, 21:56 
Итак, у нас есть система
$\left\{\begin{array}{l}
\dot{x}=y,\\
\dot{y}=-f(x)=-\frac{\partial U}{\partial x}.\\
\end{array}\right.$

Мы знаем (Фихтенгольца читали), что площадь фигуры, ограниченной замкнутой кривой, вычисляется по формуле
$S=\frac{1}{2}\int\limits_{t_0}^{T+t_0} [x(t)y'(t)-y(t)x'(t)] dt$.

Подставим уравнения системы в эту замечательную формулу и заметим, кстати, что $y^2=2(E-U(x))$ (это интеграл системы, а $E$ - это как раз энергия).

Итак,
$S(E)=\frac{1}{2} \int\limits_{t_0}^{T+t_0} (-x\frac{\partial U}{\partial x}-y^2) dt.$

А теперь подставим $y^2$, продифференцируем этот интеграл с параметром $E$ по этому самому параметру, а потом его возьмем.

Победа!

UPD Исправил. Уже два раза. :)

 
 
 
 
Сообщение25.12.2006, 22:30 
Согласно обозначениям $\dot y = f(x) = -\frac{dU}{dx}$. И в интеграле не так.

 
 
 
 
Сообщение26.12.2006, 12:23 
V.V. Спасибо за решение :lol: . Я к своему стыду совсем матан забыл. К тому же и Фихтенгольца не читал - только Зорича местами
:oops:

V.V. вопрос такой, чтобы мне до конца понять решение: вы взяли частную производную от подынтегрального выражения. А написана полная в условии. Разве остальные подынтегральные слагаемые не надо дифференцировать, они же зависят от параметра E?
Я так решал по формуле Грина: $\int\limits_{D}dxdy=\int\limits_{0}^{T}x\dot y dt=-\int\limits_{0}^{T}x(t)\frac{\partial U}{\partial x}dt$. Где D-область, ограниченная замкнутым контуром. А далее надо взять полную производную по Е от подынтегрального выражения, что у меня и не получилось.

Так секундочку, а почему здесь: $S(E)=\frac{1}{2} \int\limits_{t_0}^{T+t_0} (-x\frac{\partial U}{\partial x}+y^2) dt.$ под интегралом +y^2, а не -y^2

 
 
 
 Re: период движения по фазовой кривой
Сообщение07.04.2024, 16:28 
Чтобы не было путаницы кинетическую энергию обозначим буквой K. Оставим букву T для обозначения периода. Среднюю по времени кинетическую энергию (при t→∞) обозначим K̅. Заметим, что она совпадает со средней за период T. Остальные обозначения: Арнольд. Математические методы классической механики, §4, пункт Г, задача третья с конца.
Рассмотрим случай, когда потенциальная энергия является однородной функцией k-ой степени. Вириальная теорема (см. Ландау, Лившиц, Механика, §10, формула 10.3) с учетом наших обозначений даёт
$$\bar{K}=\frac{k}{k+2}E$$
Вычислим площадь, заключенную внутри замкнутой фазовой кривой. Имеем следующую цепочку равенств:
$$S=\ \oint{ydx=}\int_{0}^{T}{y\dot{x}dt}=\int_{0}^{T}{\dot{x}\dot{x}dt}=2\int_{0}^{T}{\frac{{\dot{x}}^2}{2}dt=2\int_{0}^{T}Kdt=2\int_{0}^{T}{\overline{K}dt=}}2\overline{K}T=\frac{2k}{2+k}ET$$
Тогда
$$\frac{dS}{dE}=\frac{2k}{2+k}T$$
Формула, указанная в задаче, имеет место в случае гармонического осциллятора, т. е. при k=2.
Возможны иные примеры.
Рассмотрим единичную массу (шарик) между двух стенок на расстоянии единица, движущийся перпендикулярно стенкам. Удар абсолютно упругий. Трения и тяготения нет. В этом случае
$$S=2y;\ \ \ E=\frac{y^2}{2};\ \ \ T=\frac{2}{y}$$
$$dS=2dy;\ \ \ dE=ydy;\ \ \ \frac{dS}{dE}=\frac{2}{y}=T$$
Рассмотрим единичную массу (шарик), падающий с высоты h с ускорением g на плиту и отражающийся вверх после абсолютно упругого удара.
$$S=gTh;\ \ \ E=gh;\ \ \ T=2\cdot\sqrt{\frac{2h}{g}}$$
$$dS=gTdh;\ \ \ dE=gdh;\ \ \ \frac{dS}{dE}=T$$

 
 
 
 Re: период движения по фазовой кривой
Сообщение07.04.2024, 18:53 
Аватара пользователя
Evgenjy, Вы, похоже, рекорд установили.

Кстати, общий случай часто доказывается проще, чем частные.

 
 
 
 Re: период движения по фазовой кривой
Сообщение09.06.2024, 19:48 
еще там переменные <<Действие-Угол >> есть

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group