2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Оранжевый треугольник
Сообщение12.06.2011, 18:38 


01/10/10

2116
Израиль (племянница БизиБивера)
mihailm в сообщении #457164 писал(а):
Xenia1996 в сообщении #457085 писал(а):
...
Доказать, что высоты остроугольного треугольника пересекаются в одной точке
...

это из школьного учебника входит в программу

Источник - в студию!

-- Вс июн 12, 2011 18:38:53 --

MrDindows в сообщении #457105 писал(а):
Xenia1996 в сообщении #457085 писал(а):
2) Доказать, что высоты остроугольного треугольника пересекаются в одной точке (это, кстати, не так уж и очевидно - а вдруг существует остроугольный треугольник, высота которого не проходит через точку пересечения двух других высот?).

Ну это по теореме Чевы доказывается.
$AC_1=b\cos A, \ BC_1=a \cos B, \ BA_1=c\cos B, \ CA_1=b\cos C,\\ CB_1=a \cos C, \ AB_1=c \cos A \\$

$\frac{AB_1}{B_1C}\cdot\frac{CA_1}{A_1B}\cdot\frac{BC_1}{C_1A}=1$

Именно на теорему Чевы я и намекала.

 Профиль  
                  
 
 Re: Оранжевый треугольник
Сообщение12.06.2011, 18:50 
Заслуженный участник


02/08/10
629
В Украине теорема Чевы входит в программу 8-го класса с углублённым изучением математики)

 Профиль  
                  
 
 Re: Оранжевый треугольник
Сообщение12.06.2011, 18:55 


01/10/10

2116
Израиль (племянница БизиБивера)
MrDindows в сообщении #457174 писал(а):
В Украине теорема Чевы входит в программу 8-го класса с углублённым изучением математики)

(Оффтоп)

А Украина признаёт двойное гражданство? А на киевский мехмат меня возьмут?

 Профиль  
                  
 
 Re: Оранжевый треугольник
Сообщение12.06.2011, 18:56 
Заслуженный участник


02/08/10
629
Xenia1996 в сообщении #457177 писал(а):
MrDindows в сообщении #457174 писал(а):
В Украине теорема Чевы входит в программу 8-го класса с углублённым изучением математики)

(Оффтоп)

А Украина признаёт двойное гражданство? А на киевский мехмат меня возьмут?

Не признаёт( А на мехмат возьмут, туда вроде как не тяжело попасть)

 Профиль  
                  
 
 Re: Оранжевый треугольник
Сообщение12.06.2011, 19:04 


19/05/10

3940
Россия
Xenia1996 в сообщении #457167 писал(а):
...
Источник - в студию!
...

Программу или учебник?)

 Профиль  
                  
 
 Re: Оранжевый треугольник
Сообщение12.06.2011, 19:05 


01/10/10

2116
Израиль (племянница БизиБивера)
mihailm в сообщении #457182 писал(а):
Xenia1996 в сообщении #457167 писал(а):
...
Источник - в студию!
...

Программу или учебник?)

По Вашему желанию.

 Профиль  
                  
 
 Re: Оранжевый треугольник
Сообщение15.06.2011, 09:56 
Заслуженный участник


11/05/08
32166
Xenia1996 в сообщении #457082 писал(а):
Более того, доказать, что высоты любого остроугольного треугольника пересекаются в одной точке, не так уж просто (несмотря на кажущуюся очевидность).

Вполне тривиально, что для неостроугольного треугольника точка пересечения высот не может лежать внутри. В любом случае: непонятно, зачем пудрить мозги совершенно никчемушными высотами.

mihailm в сообщении #457164 писал(а):
Xenia1996 в сообщении #457085 писал(а):
Доказать, что высоты остроугольного треугольника пересекаются в одной точке
это из школьного учебника входит в программу

Не уверен. Мне смутно припоминается, что у нас в школе как раз для высот этой теоремы и не было. Во всяком случае, я школьного доказательства не припомню (через векторную-то алгебру это легко доказывается).

zhekas в сообщении #457104 писал(а):
1) Если угол, например $\alpha$, не острый.

Тогда $\beta+\gamma\leqslant\frac{\pi}{2}\ \Rightarrow\ \beta\leqslant\frac{\pi}{2}-\gamma\ \Rightarrow\ \sin\beta\leqslant\sin(\frac{\pi}{2}-\gamma)=\cos\gamma$, вот и всё, и никаких Чев.

 Профиль  
                  
 
 Re: Оранжевый треугольник
Сообщение15.06.2011, 10:19 
Заслуженный участник
Аватара пользователя


23/08/07
5500
Нов-ск
Через каждую вершину тр-ка провести прямую параллельно противолежащей стороне. Эти прямые образуют треугольник, для которого высоты исходного тр-ка являются срединными перпендикулярами, которые в любой школе пересекаются в одной точке.

 Профиль  
                  
 
 Re: Оранжевый треугольник
Сообщение15.06.2011, 10:47 
Заслуженный участник
Аватара пользователя


13/08/08
14495
А вдруг они пересекаются не внутри исходного треугольника. Тут же ищется школьное доказательство того, что для остроугольного треугольника пересекаются именно высоты как отрезки, а не как прямые, на которых они лежат.

 Профиль  
                  
 
 Re: Оранжевый треугольник
Сообщение15.06.2011, 11:46 


21/07/10
555
Xenia1996 в сообщении #457082 писал(а):
nnosipov в сообщении #457080 писал(а):
Xenia1996 в сообщении #457068 писал(а):
Доказать, что высоты оранжевого треугольника пересекаются в одной точке.

Столь замысловато Ксения хочет сказать, что оранжевый треугольник будет остроугольным.

Более того, доказать, что высоты любого остроугольного треугольника пересекаются в одной точке, не так уж просто (несмотря на кажущуюся очевидность).


Оставьте в покое теорему Чевы. Просто проведите через вершины треугольника (не обязательно остроугольного) прямые, параллельные противолежащим сторонам. Эти прямые образуют новый большой треугольник, серединные перпендикуляры которого совпадают с высотами исходного треугольника. ВСЕ!

Другой вариант - тупо применить вектора, разложение по базису и скалярное произведение. При этом можно также получить естественное обобщение теоремы о высотах.

Кстати, почему-то теорема о высотах впервые была доказана во времена Эйлера (кажется Эйлер и доказал). Видимо греки считали это очевидным или не интересовались высотами.

 Профиль  
                  
 
 Re: Оранжевый треугольник
Сообщение15.06.2011, 12:17 
Заслуженный участник


11/05/08
32166
gris в сообщении #458254 писал(а):
А вдруг они пересекаются не внутри исходного треугольника.

А это тривиально: для остроугольного треугольника точка пересечения (если она есть) может лежать только внутри, для тупоугольного -- только снаружи.

 Профиль  
                  
 
 Re: Оранжевый треугольник
Сообщение15.06.2011, 15:26 
Заслуженный участник
Аватара пользователя


13/08/08
14495
После трёхчасового оцепенения соглашусь. Да, в остроугольном треугольнике высота лежит между соответствующих сторон, то есть внутри треугольника. И общая точка, если она есть, лежит внутри. Так вот: почему высоты пересекаются?
Срединные перпендикуляры (лучи) внешнего треугольника содержат высоты (отрезки), но не равняются им.
Впрочем, наверняка есть решение прямо от аксиом. Но совершенно невозможно сосредоточиться.

 Профиль  
                  
 
 Re: Оранжевый треугольник
Сообщение15.06.2011, 15:37 
Заслуженный участник
Аватара пользователя


23/08/07
5500
Нов-ск
gris в сообщении #458338 писал(а):
Так вот: почему высоты пересекаются?

А с медианами и биссектрисами проблем нет?
Они благополучно пересекаются или трагически разминаются?

 Профиль  
                  
 
 Re: Оранжевый треугольник
Сообщение15.06.2011, 16:56 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Точка пересечения биссектрис любого треугольника — это центр вписанной окружности, внутренность которой целиком лежит внутри треугольника.

Точка пересечения медиан любого треугольника делит каждую в отношении 1:2, то есть лежит на медиане как на отрезке, который лежит внутри треугольника.

С высотой такого очевидного соображения не возникает.
Надо звать Sasha2. Уж он наверняка знает.

 Профиль  
                  
 
 Re: Оранжевый треугольник
Сообщение15.06.2011, 17:00 
Заслуженный участник


20/12/10
9111
TOTAL в сообщении #458345 писал(а):
Они благополучно пересекаются или трагически разминаются?

Они конкурируют.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 42 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: nnosipov


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group