Более того, доказать, что высоты любого остроугольного треугольника пересекаются в одной точке, не так уж просто (несмотря на кажущуюся очевидность).
Вполне тривиально, что для неостроугольного треугольника точка пересечения высот не может лежать внутри. В любом случае: непонятно, зачем пудрить мозги совершенно никчемушными высотами.
Доказать, что высоты остроугольного треугольника пересекаются в одной точке
это из школьного учебника входит в программу
Не уверен. Мне смутно припоминается, что у нас в школе как раз для высот этой теоремы и не было. Во всяком случае, я школьного доказательства не припомню (через векторную-то алгебру это легко доказывается).
1) Если угол, например

, не острый.
Тогда

, вот и всё, и никаких Чев.