Пару вариантов действия для частицы спина
можно посмотреть в книжке Полякова в разделе ``Ферми-частицы''. Он там обобщает действие в поляковской форме (т.е. с vielbein на мировой линии) добавлением грассмановых координат...
Это в "Калибровочных полях и струнах"? Посмотрел. Но рассматривать фермионы, как мне кажется, пока рано. Хотя бы с бозонами разобраться.
...Если рассматривать произвольный спин
, то известно, что гильбертово пространство можно получить квантованием классического фазового пространства
со скобкой
,
. Эта штука имеет естественный классический предел большого момента. Было бы интересно узнать, можно ли из этой конструкции сделать действие для релятивистской частицы.
Интересный факт. А где с ним можно познакомиться поближе?
Интересная тема, но почему-то не звучит геометрический (румеровский) подход к действию. А что если спиновая составляющая действия точечной частицы связана с её вращением в светоподобном конусе? Иначе говоря, следует рассмотреть вариант, когда траектория точечной частицы имеет две сосавляющие, а именно: классическую - движение в псевдоримановом пространстве, и квантовую - вращение в светоподобном конусе этого пространства. Кстати, если конус намотать на 3-сферу, то алгебра вращений по такой сфере совпадает с алгеброй Ли .
Формализовать эту идею можете?