Или имеется терминологическая путаница, гауссовой кривизной называем разные вещи или я действительно что-то путаю. Я взял математическую энциклопедию, и прочел, что такое Гаусова кривизна. До этого я читал Смирнова, и там гаусова кривизна определяется как произведение
, где радиусы берутся в перпендикулярных сечениях, и по существу равны в каждом сечении
. В одном из перпендикулярных сечений строится касательный угол
и вычисляется огибающая
.
Но я прочел теорему в энциклопедии. Для
При условии
гауссова кривизна определяется как величина
Т.е. для моего случая равна нулю, так как
.
Выходит формула (1) не верна, что абсолютно не постижимо. Или это разные определения кривизны. Пока я в этом не разберусь, излагать мой материал не имеет смысла.
Дело в том, что по Смирнову Гауссова кривизна сферы равна
, согласно формуле
и при
, получаем результат.
Кроме того, в этой теореме, которую я прочел в энциклопедии, рассматривается и не евклидовы поверхности, сумма углов которых в треугольнике меньше
. мНе это абсолютно ни к чему.
Я ограничусь Смирновым Курс Высшей математики.
тАк что я склоняюсь к тому что у нас произшло терминологическое не понимание, и правы как я, так и Вы.