2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 11, 12, 13, 14, 15  След.
 
 Re: Есть ли синтаксис в математике?
Сообщение23.04.2010, 19:00 
Заслуженный участник


27/04/09
28128
По определению операции деления частным не может быть множество. Хотя бы поэтому $\frac00$ не определено.

 Профиль  
                  
 
 Re: Есть ли синтаксис в математике?
Сообщение24.04.2010, 16:35 
Экс-модератор


17/06/06
5004
arseniiv в сообщении #312550 писал(а):
По определению операции деления
Можно короче: "По определению операции." :roll:

 Профиль  
                  
 
 Re: Есть ли синтаксис в математике?
Сообщение24.04.2010, 17:32 
Заблокирован
Аватара пользователя


18/05/09

366
из эпохи Аристотеля
По профессиональной этике, математик может утверждать в математике только то, что он может доказать. Это же записано в правилах форума.

Есть одинаковые утверждения, о неразрешимости уравнения вида $ax=b$ от авторов утверждений bot и shwedka:

1.
Цитата:
$0\cdot t =6$ , откуда
$t = 6/0$
shwedka в сообщении #225699 писал(а):
Нет, неопределенностью называется совсем другое. Посмотрите в учебнике. У Вас получилось неразрешимое уравнение. Запрещенная операция, деление на ноль.


2.
bot в сообщении #73791 писал(а):
Разделить число $b$ на число $a$ в произвольном поле означает найти элемент $x$ этого поля, удовлетворяющий уравнению $ax=b$. Не так ли?
Если $a\ne 0$, то эта задача однозначно разрешима. Если же $a=0$, то при $b\ne 0$ уравнение неразрешимо, а при $b=0$ любой элемент поля будет решением. И в том и в другом случае ввести операцию деления нам не удастся.

Не требуя от авторов процитированных утверждений конкретного доказательства по конкретному утверждению, (предполагаю, что оно у них есть) мне интересно, можно ли, не нарушая общности рассмотрения, доказать два утверждения для одного уравнения вида $ax=b$ в поле $\mathbb{R}$:

  • его неразрешимость при $a=0$, $b\ne 0$;
  • его разрешимость при $a=0$, $b=0$.

 Профиль  
                  
 
 Re: Есть ли синтаксис в математике?
Сообщение24.04.2010, 19:57 
Заслуженный участник


09/08/09
3438
С.Петербург
errnough в сообщении #312800 писал(а):
мне интересно, можно ли, не нарушая общности рассмотрения, доказать два утверждения для одного уравнения вида $ax=b$ в поле $\mathbb{R}$:

* его неразрешимость при $a=0$, $b\ne 0$;
* его разрешимость при $a=0$, $b=0$.
$(\forall x \in \mathbb R)(0 \cdot x = 0)$, поэтому любое $x \in \mathbb R$ является решением уравнения $a x = b~ \text{при}~ a = 0, b = 0$.
В то же время $(\forall x \in \mathbb R) (0 \cdot x = 0) \Leftrightarrow (\nexists x \in \mathbb R) (0 \cdot x \neq 0)$, поэтому не существует $x \in \mathbb R$, являющихся решением уравнения $a x = b~ \text{при}~ a = 0, b \neq 0$

 Профиль  
                  
 
 Re: Есть ли синтаксис в математике?
Сообщение24.04.2010, 21:42 
Заслуженный участник
Аватара пользователя


23/07/05
17991
Москва
errnough в сообщении #312800 писал(а):
Не требуя от авторов процитированных утверждений конкретного доказательства по конкретному утверждению, (предполагаю, что оно у них есть) мне интересно, можно ли, не нарушая общности рассмотрения, доказать два утверждения для одного уравнения вида $ax=b$ в поле $\mathbb{R}$:

* его неразрешимость при $a=0$, $b\ne 0$;
* его разрешимость при $a=0$, $b=0$.

Собственно говоря, что здесь "доказывать"?
Пусть $a=0$, $b\neq 0$. Поскольку $0x=0$ для любого $x\in\mathbb R$ (http://dxdy.ru/post243117.html#p243117, пункт V), то равенство $ax=b$ невозможно.
Пусть $a=0$, $b=0$. Для доказательства разрешимости достаточно указать хотя бы одно решение. Поскольку $0\cdot 0=0$ (по тому же свойству), то $x=0$ является решением.

Вам не надоело ещё изображать из себя идиота?

 Профиль  
                  
 
 Re: Есть ли синтаксис в математике?
Сообщение25.04.2010, 07:21 
Заблокирован
Аватара пользователя


18/05/09

366
из эпохи Аристотеля
Maslov в сообщении #312841 писал(а):
$(\forall x \in \mathbb R)(0 \cdot x = 0)$, поэтому
Не "поэтому",
$(\forall x \in \mathbb R)(0 \cdot x = 0)$ — это то, что еще только требуется доказать, и появиться оно может лишь в заключении, в выводе. А у Вас оно в первой же посылке, как уже доказанное или истинное. Логическая ошибка вывода.

Someone в сообщении #312926 писал(а):
Поскольку $0x=0$ для любого $x\in\mathbb R$

И не "постольку", $0x=0$ для любого $x\in\mathbb R$ это как раз то, что еще требуется доказать. У Вас это утверждение выступает как доказанное, со ссылкой на доказательство из другого контекста. Но предложенное Вами доказательство из Вашего пункта V здесь не годится:

не нарушая общности рассмотрения для одного и того же уравнения $ax=b$,

    1. докажем, что $ax=b$при $a=0$, $b=0$ разрешимо:
      1. $0x=0$,
      2. $0x=(c-c)b=bc-bc=0$,
      — истинно.
    2. докажем, что $ax=b$при $a=0$, $b\neq 0$ неразрешимо:
      1. $0x=b$,
      2. $0x=(c-c)b=bc-bc=0$,
      — ложно.

Общность рассмотрения при таком методе доказательства нарушена. А мы всего-то взяли в качестве $b$ другое число из $\mathbb R$.
-----------------

Общность рассмотрения может быть сохранена преобразованием к равносильному уравнению, это общепринятый метод решения уравнений, а не подстановка, но тогда порочный круг в доказательстве: bot утверждает, что делить на ноль запрещено потому, что уравнение $ax=b$ при $a=0$, $b\ne 0$ неразрешимо. shwedka, и другие в этой теме, утверждают, что уравнение неразрешимо, потому что на ноль делить нельзя.

(Оффтоп)

2 Someone
Я показал Ваше сообщение моему сыну, студенту 3 курса университета. Реакция была предсказуемой.

 Профиль  
                  
 
 Re: Есть ли синтаксис в математике?
Сообщение25.04.2010, 09:18 


25/04/10
2
errnough в сообщении #312998 писал(а):
$(\forall x \in \mathbb R)(0 \cdot x = 0)$ — это то, что еще только требуется доказать

Этого не требуется доказывать, это аксиома.
Арифметика Пеано

 Профиль  
                  
 
 Re: Есть ли синтаксис в математике?
Сообщение25.04.2010, 11:11 
Заслуженный участник
Аватара пользователя


06/10/08
6422
errnough в сообщении #312998 писал(а):
Maslov в сообщении #312841 писал(а):
$(\forall x \in \mathbb R)(0 \cdot x = 0)$, поэтому
Не "поэтому",
$(\forall x \in \mathbb R)(0 \cdot x = 0)$ — это то, что еще только требуется доказать, и появиться оно может лишь в заключении, в выводе. А у Вас оно в первой же посылке, как уже доказанное или истинное. Логическая ошибка вывода.
Это широко известное свойство нуля в поле. Если хотите, чтобы его доказали из аксиом поля, то вот:
$0x = (1-1)x = 1x - 1x = x - x = 0$

 Профиль  
                  
 
 Re: Есть ли синтаксис в математике?
Сообщение25.04.2010, 11:16 
Заслуженный участник


27/04/09
28128
Kergan, вещественные числа — не натуральные (у которых аксиоматика Пеано) и не целые!! Хотя хотя множество целых и не являются полем, для него тоже можно доказать аналогичным образом.

Хотя вообще, если вводить ноль только в целых числах, тогда это будет доказываться из построения их как пар натуральных:$$0x \sim \left( {a;a} \right)\left( {m;n} \right) = \left( {am + an;an + am} \right) = \left( {a(m + n);a(m + n)} \right) \sim 0$$

 Профиль  
                  
 
 Re: Есть ли синтаксис в математике?
Сообщение25.04.2010, 11:22 
Заслуженный участник


11/05/08
32166
Xaositect в сообщении #313057 писал(а):
Если хотите, чтобы его доказали из аксиом поля, то вот:
$0x = (1-1)x = 1x - 1x = x - x = 0$

Ну не совсем так быстро. Тут ещё надо доказывать, что $(-1)\cdot x=-x$.

Тогда уж лучше так: $(a+0)\cdot x=ax+0x=ax$. И если уже доказано, что нулевой элемент единственен, то -- вот оно.

Вообще, любое доказательство подобного рода имеет смысл лишь в контексте. Что, где, когда, откуда именно.

 Профиль  
                  
 
 Re: Есть ли синтаксис в математике?
Сообщение25.04.2010, 15:56 


25/04/10
2
arseniiv в сообщении #313060 писал(а):
Kergan, вещественные числа — не натуральные (у которых аксиоматика Пеано) и не целые!! Хотя хотя множество целых и не являются полем, для него тоже можно доказать аналогичным образом.

Совершенно не важно где, что, как вводится и как доказывается. В рамках данной дискуссии следует считать аксиомой все, что возможно считать аксиомой - иначе г-н errnough вновь ответит бестолковой отпиской про нарушение общности. Или еще чего-нибудь придумает - фантазия у него хорошая.

 Профиль  
                  
 
 Re: Есть ли синтаксис в математике?
Сообщение25.04.2010, 16:13 
Заслуженный участник


09/08/09
3438
С.Петербург
arseniiv в сообщении #313060 писал(а):
Хотя хотя множество целых и не являются полем, для него тоже можно доказать аналогичным образом.
Ну да, потому что для выполнения этого свойства множество с введенными на нём двумя операциями вовсе не обязано быть полем: достаточно, чтобы оно было кольцом. А множество $\mathbb Z$ -- это как раз кольцо.

 Профиль  
                  
 
 Re: Есть ли синтаксис в математике?
Сообщение25.04.2010, 17:14 
Заслуженный участник


27/04/09
28128
Да, это я просто забыл слово, потому написал "можно ... аналогичным образом" :D

Kergan в сообщении #313228 писал(а):
В рамках данной дискуссии следует считать аксиомой все, что возможно считать аксиомой
Ну а тогда errnough скажет, что слишком много аксиом развелось. :wink: К тому же, если вывод небольшой, почему бы и не? Он требовал доказать — доказательство тут как тут, для колец и для множества целых чисел по его построению без доказательства остальных вещей, нужных, чтоб оно стало кольцом — почти на любой вкус.

 Профиль  
                  
 
 Re: Есть ли синтаксис в математике?
Сообщение25.04.2010, 17:33 
Заслуженный участник
Аватара пользователя


06/10/08
6422
ewert в сообщении #313064 писал(а):
Xaositect в сообщении #313057 писал(а):
Если хотите, чтобы его доказали из аксиом поля, то вот:
$0x = (1-1)x = 1x - 1x = x - x = 0$

Ну не совсем так быстро. Тут ещё надо доказывать, что $(-1)\cdot x=-x$.

Ну или дистрибутивность вычитания относительно умножения, что в принципе одно и то же.

 Профиль  
                  
 
 Re: Есть ли синтаксис в математике?
Сообщение25.04.2010, 23:58 
Заблокирован
Аватара пользователя


18/05/09

366
из эпохи Аристотеля
Простота выражения $0x=0$ играет злую шутку :) Куда уж здесь логике втесаться, когда всё якобы очевидно. Парочка прикидок в уме и подбор на глазок. Скольких людей уже подводил отказ от логики. Хорошо, остаемся каждый при своем. Общего метода доказательства для одного уравнения нет, IMHO. С аксиомами еще смешнее, Пеано не решается доказывать, и вводит как аксиому, а Someone запросто его доказывает. Пеано не мог додуматься до этого школьного доказательства, или понял его нелогичность? А может, Пеано тоже слегка логику включил, если не смог сам себе доказать и расписался: «$0x=0$ — аксиома»? Напоследок:
Всмотритесь в это доказательство.

    Докажем, что $ax=b$при $a=0$, $b=0$ разрешимо:
    1. $0x=0$,
    2. $0x=(c-c)b=bc-bc=0$,
    — истинно.

    или :

    $0x = (1-1)x = 1x - 1x = x - x = 0$

Ни в одной логике (даже в современной) в процессе рассуждений не разрешается менять изначальные условия. В правую часть уравнения вводится бессмысленная операция с символом $c$: $(c-c)$, вопреки обычной логике сократить всё, что только сокращается. Появление $c$ это откровенное изменение условия в процессе рассуждений. В условии нет четвертого символа $c$. Не менее интересно заметить, что по условию $b=0$, из-за чего уравнение $ax=b$ превращается $0x=0$. Проблема уже нарисовалась, надо бы как-то получить аналитически голый $x$ в одной стороне знака "=", а всё остальное — в другой. И что же делают мои уважаемые собеседники? Они берутся преобразовывать правую(!) часть уравнения $0x=0$. Возвращают на место символ $b$, вытаскивают из рукава символ $c$ и парочкой перестановок между $b$ и $c$ "доказывают", что правая часть уравнения $0x=0$ как была, так и остаётся нулем. Дык, она и по условию нулю равна, так что же вы доказываете?

Может, такой прием доказательства настолько универсален, что сгодится, наверное, и здесь:
    Дано: $ax=1/b$. Доказывается [...]
    1. $ax=1/b$
    2. $ax=\frac{1}{b(c-c)}$
    3. ... ...
Так "доказать" можно всё что угодно, кроме истины.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 213 ]  На страницу Пред.  1 ... 11, 12, 13, 14, 15  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group