Ненормируемая плотность распределения вероятности и стохастическое обоснование квантовой механикиПри изучении квантовой механики буквально с ходу начинаешь сталкиваться с ненормируемыми плотностями распределения вероятностей (
ПРВ). Известно, что ПРВ местоположения квантовой частицы или ансамбля частиц
вычисляется из квантового уравнения Шредингера (
УрШ) :
по формуле
, где
- некая комплекснозначная функция – решение УрШ.
Однако легко видеть, что вычисляемая таким образом ПРВ может быть ненормируемая, если мы рассматриваем безконечную область пространства, т.е. возможна ситуация, когда
.
Естественно, безконечность может быть и для одномерного случая.
Расходимость ПРВ начинается уже для простейшего случая плоской волны Де Бройля
, являющейся решением УрШ для свободной частицы, послужившей отправной точкой для принятия Де Бройлем гипотезы о наличии волновых свойств у корпускулярной материи (и наоборот, корпускулярных свойств у волновой материи или полей). Понятно, что модуль мнимой экспоненты всегда равен единице, а интегрирование любой константы, не равной нулю, на безконечности равно безконечности. Но физиков это безпокоит мало. Вот что пишет Л.Д. Ландау и Е.М. Лифшиц в своем третьем томе теоретической физики «Квантовая механика. Нерелятивистская теория»:
«В таких случаях не определяет, конечно, абсолютные значения вероятности координат, но отношение квадратов в двух различных точках конфигурационного пространства определяет относительную вероятность соответствующих значений координат.Вот так, физики подразумевают ПРВ как некоторые обобщенные функции, а мы об этом «ни сном, ни духом» :) . По крайней мере, в Интернете, информацию на эту тему я не нашел.
Естественно, что безконечная неопределенность координаты местоположения квантовой частицы вызвана соотношением неопределенности Гейзенберга, которое для нулевой неопределенности импульса требует безконечной неопределенности координат. Кстати, рассмотрение волнового пакета плоских волн, импульс
которых непрерывно изменяется в узком диапазоне
имеет общую волновую функцию, которая уже дает классическую ПРВ, интегрируемую на безконечности. Так что микрочастицы это скорее волновые пакеты плоских волн, а не отдельные волны Де Бройля.
Что может вызывать вопросы относительно ненормируемых ПРВ? Для меня это, прежде всего, существование
реализации последовательности случайных точек в пространстве, подчиняющихся данной ненормируемой плотности распределения вероятности. Очевидно, что никакая
конечная последовательность таких случайных точек не может претендовать на аппроксимацию ненормируемого распределения. Для примера возьмем случай плоской волны Де Бройля. Ее ПРВ это
,
определенная для всего пространства и времени. В принципе, это может быть любое конечное значение большее нуля. С точки зрения физиков это равномерное распределение, так как относительная вероятность для любых конечных областей пространства равна единице, т.е. частица может находиться где угодно в пространстве, в данной точке времени. А поскольку она имеет конечный импульс, то не «стоит» на месте, а «перемещается» по пространству, вероятно, скачкообразно, по типу случайного блуждания броуновской частицы или в общем случае, по некоторому стохастическому закону.
Похоже, что точка приложения импульса «отвязана» от квантовой частицы. Типа, импульс сам по себе, а частица сама по себе.
Вопрос, а какова частота скачков квантовой частицы за единицу времени в пространстве, подчиняющейся волновой функции Де Бройля? Хотя бы конечно их количество или безконечно?
Мне кажется, что конечным множеством случайных точек нельзя равномерно заполнить безконечное пространство. Иначе, ПРВ была бы нормируемой за любое конечное время. Вероятно таких скачков безконечно.
Но как можно построить конечную реализацию равномерного распределения безконечной области?
Вот здесь мы подходим к идее, которая если и известна, то только не мне :) . Поэтому ее приходится переоткрывать. Хотя есть статья В.Ю. Подлипчук. «Стохастическая модель квантовой механики», в которой он вводит понятие
квазивероятности, но это не совсем то, чтобы нам хотелось. Ограничимся одномерным случаем, больше размерности «обрабатываются» аналогично.
1. Мы задаем конечную реализацию равномерного распределения на сколько угодно большом, но конечном отрезке
, скажем
точками, которое также сколь угодно большое, но конечное натуральное число.
2. Затем мы
периодически распространяем наш отрезок влево и вправо, так чтобы он плотно покрывал всю вещественную ось. Для корректности вместо замкнутого отрезка можно рассматривать полузамкнутый. Получаем некоторое равномерное приближение на безконечности (безконечной области).
3. Если нам необходимо получить распределение отличное от равномерного, то вполне можно подобрать такое отображение, которое переведет наше безконечное множество случайных точек равномерно заполняющих безконечную область, в другое безконечное множество случайных точек, подчиняющееся заданной ненормируемой плотности распределения вероятностей. Это уже вопрос математической техники.
4. Мы сколь угодно можем повышать точность нашей реализации ненормируемой ПРВ, увеличивая
и
до любых сколь угодно больших, но конечных значений.
Вопрос к участникам форума.
Насколько корректен такой подход к определению ненормируемых ПРВ?Попутно возникает вопрос о возможности стохастической интерпретации поведения свободной квантовой частицы в конечной или безконечной области пространства и времени.
Вот что пишет Х. Намсрай, в своей статье «Стохастическая механика»:
«Самым интересным, с математической точки зрения, среди полученных результатов следует, по-видимому, считать тот факт, что динамические уравнения стохастической механики – это нелинейные дифференциальные уравнения в частных производных, которые допускают линеаризацию, при этом полученные линейные уравнения формально совпадают с уравнением Шредингера, если положить коэффициент диффузии равным .»Другой автор, С.В. Ганцевич, в свой статье с длинным названием: «Диаграммы, резольвента, вероятность. Пуассоновский процесс и интеграл по путям» тоже рассматривает УрШ, со стохастической точки зрения и даже получает его нетривиальное решение, для одномерного, нестационарного случая, при равенстве потенциала
тождественному нулю. Т.е. для уравнения
он находит решение, которое не есть произведение функций только от координат и только от времени, предлагаемое во всех учебниках по квантовой механике, а именно
.
У нее тоже будет ненормируемая ПРВ, причем зависящая от времени, что тоже требует осмысления.
.
Еще одна интересная статья, обосновывающая дифракцию с вероятностной точки зрения – В.И. Пунегов. «Статистическая динамическая теория дифракции на сверхрешетке».
Таким образом, тема ненормируемых ПРВ в квантовой механике, плавно перерастает в тему
стохастического обоснования этой самой
квантовой механики :) .