Это смотря какая программа!
Назовём квадраты 4-го порядка, заполненные числами от 0 до 9, о которых вы пишете, нетрадиционными магическими квадратами типа "0-9" ( для краткости). Итак, у вас была программа для построения квадратов типа "0-9". Эта программа построила около семи миллионов квадратов. И абсолютно во всех этих квадратах числа повторяются. Я правильно понимаю? Например, такой латинский квадрат:
Код:
0 2 1 3
3 1 2 0
2 0 3 1
1 3 0 2
относится к магическим квадратам типа "0-9"?
Ваша программа строит квадраты из множества чисел, которое состоит всего из 10 чисел. Значит, она проверяет только 10 чисел. Или нет?
Если теперь заменить числа от 0 до 9 десятью любыми смитами, то по вашей программе получится несколько нетрадиционных магических квадратов из смитов, но не будет ни одного квадрата, составленного из разных смитов (потому что нельзя составить магический квадрат 4-го порядка из 10 разных чисел, так чтобы эти числа не повторялись; для этого нужно как минимум 16 разных чисел!).
Метод построения нетрадиционных магических квадратов из простых чисел с применением латинских квадратов описан мной в статье
Нетрадиционные магические квадраты из простых чисел. Он работает для любого порядка, а не только для порядка 4. Если заменить в приведённом мной квадрате числа 0, 1, 2, 3 любыми смитами, то получится магический квадрат из смитов, но повторяющихся.
Теперь переходим к построению нетрадиционных магических квадратов 4-го порядка из разных составных смитов. Как же строить такие квадраты по той же программе, если та программа строит квадраты только из 10 чисел, и поэтому во всём квадрате числа разными быть никак не могут? Не могу понять этот момент!
А если вы проверяете в своей программе 24 (или 52) смита, то это будет уже совсем другая программа, не имеющая ничего общего с программой построения квадратов типа "0-9".
Извините, что так пространно написала, но пытаюсь понять, чего же я не так понимаю
-- Вт июл 07, 2009 08:51:09 --Проверила свою программу для магической константы 998. Как и следовало ожидать, программа построила нетрадиционные магические квадраты из разных простых чисел с такой магической константой. С повторяющимися числами тоже есть квадраты (я в программе разрешила числам повторяться, чтобы и такие квадраты видеть). С повторяющимися числами, например, такой квадрат получился:
Код:
29 317 389 263
191 353 281 173
461 137 227 173
317 191 101 389
С разными числами, например, такой квадрат:
Код:
29 317 389 263
101 353 461 83
641 47 137 173
227 281 11 479
Это ваш квадрат с точностью до М-преобразования (чтобы получить из моих квадратов квадраты из составных смитов, надо все элементы удвоить).
Моя программа выдаёт все квадраты, получающиеся друг из друга основными преобразованиями и М-преобразованиями. Но чтобы выполнить её полностью, надо довольно много времени. Для магической константы 980 я не выполнила программу до конца; до того момента, как я её прервала, она не выдала ни одного квадрата. Не буду выполнять её дальше. Поверю вам, что магическая константа 1996 минимальная для квадратов такого рода (из удвоенных простых чисел, являющихся смитами).