В
topic23635.html на свой же вопрос: "А разве вымерли триссектристы? Квадратурщики и удвоители куба?", - заслуженный участник "bot" ответил. - "Их, конечно, поменьше - может быть со временем их поубавилось, а скорее ферматистов привлекает элементарность формулировки и кажущаяся возможность обойтись при помощи палки-копалки".
Будьте уверены, не вымерли.
По видимому, милостью Всевышнего мне дано, кроме задач о квадратуре круга и удвоении куба, найти решение и третьей математической задачи древних греков: задачи о трисекции угла.
Задачу о делении циркулем и линейкой произвольного угла на три равные части (угла), скорее всего, греки решили и оно было таким:
а) вокруг вершины данного угла описываем окружность произвольного радиуса;
б) продолжим одну из сторон центрального угла до пересечения с окружностью (точка пересечения будет вершиной вписанного угла, опирающегося на ту же дугу окружности, что и центральный угол);
в) откладываем на диаметре три равных отрезка способом, указанным в
topic21409.html; г) из полученных точек проводим лучи, параллельные другой стороне вписанного угла.
Можно доказать, что три дуги , получаемые при пересечении дуги, на которую опирается центральный угол, равны между собой.
Предполагаю, что и эта задача возникла для практических нужд архитектуры. Греки имели определённую систему сочетания ордеров, определяемую в пропорциях и украшениях колонн, которые в сечениях часто обрабатывались в виде правильных многоугольников.
Задачу о трисекции угла можно решить и другим способом, положив в основу параллакс.