Между прочим, утверждение: "Множество называется бесконечным, если его мощность
", есть и в указанной статье википедии.
Начхать на Википедию. Есть два существенно разных определения бесконечных множеств.
1) Множество
бесконечно, если оно не равномощно никакому натуральному числу (требуется предварительно определить натуральные числа в теории множеств).
2) Множество
бесконечно по Дедекинду, если оно содержит собственное подмножество
, равномощное самому
.
Если справедлива аксиома выбора, то оба определения равносильны. Без аксиомы выбора они, однако, не равносильны.
А моё определение, которое удивительным образом совпало с формулировкой из википедии, чем Вас не устраивает? Я так полагаю, что оно равносильно Вашему 1-ому, хотя это, конечно, нужно доказать (на что я, признаться, никакой мотивации не имею).
И не докажете. Потому что Ваше определение равносильно моему второму, а про первое мне точно известно, что оно второму (следовательно, и Вашему) не равносильно, если нет аксиомы выбора.
Из приведённой Вами цитаты я в этом "убедиться" не могу. Это всего лишь некоторые общие слова, призванные объяснить, с каким объектами мы далее собираемся иметь дело (и обозначить их как-то).
Ага. В классической математике множества нужны тоже исключительно для того, чтобы объяснить, с какими объектами мы далее собираемся иметь дело и обозначить их совокупность как-то (Вы так старались обойти слово "множество" или какой-нибудь его заменитель, что получилась ерунда; Кушнер, конечно, обозначение
ввёл не для натуральных чисел, а для их множества).
В том смысле, что прямо об этом никто не заявил. Вот аксиома бесконечности в теории множеств прямо заявляет, что множество включает всех последователей. Есть такое же прямое утверждение где-то, например, у того же Кушнера?
Что значит - "прямое"? Термины типа "
- множество комплексных чисел" обозначают именно множество
всех объектов указанного типа.
Вы Кушнера внимательно читали? Он далее определяет операции и отношения
на множестве , используя при этом обозначения вида
. Что, по Вашему мнению, у него получилось бы, если бы
включало не все натуральные числа?
Вы в курсе, что высказывания со свободными переменными трактуются так, будто по всем свободным переменным имеются кванторы всеобщности?
Что, по Вашему мнению, означает утверждение
"
каковы бы ни были натуральные числа , , имеет место ",
если не
"
"?
Someone писал(а):
epros писал(а):
Я могу говорить о каких-то совокупностях натуральных чисел, даже называть их "множествами" и обозначать специальными буквами. Но это не значит, что я утверждаю, что существует множество, включающее их все.
"Их" - это кого? Множества или натуральные числа?
Совокупности натуральных чисел.
Пока никто, кроме Вас, не говорил о множестве совокупностей натуральных чисел. Кушнер говорил о множестве натуральных чисел, я - тоже. Понадобится ли ему или мне множество совокупностей - не ясно. Думаю, что его как-нибудь конструктивно смоделировать можно.
Вы несколько раз зачем-то сказали, что теория множеств "мне не нравится", что я проигнорировал как не относящееся к делу.
Я хотел побудить Вас к высказываниям, содержащим конкретные математические аргументы. Пока наблюдаю лишь увёртки и общие декларации отнюдь не математического характера, совершенно мне не интересные. Я так и не смог понять из Ваших слов, ни что такое "актуальная бесконечность" (не повторяйте, пожалуйста, своё "определение", оно никакой "актуальности" не определяет), ни чем она хуже "потенциальной" (которую тоже следовало бы определить).
Пока, вроде бы, прояснилось, что "актуально бесконечное" множество содержит все свои элементы, а "потенциально бесконечное" - не все. Или я Вас не так понял?
Мы рассматривали не такой случай, когда очередной шаг перебирающего алгоритма может оказаться неразрешимым. Эту возможность Вы сами домыслили.
Насколько я помню, явно это предположение не формулировалось. В данном случае я хотел на примере конечного множества смоделировать ситуацию, которая более естественно возникает в случае бесконечного множества.
Речь шла о гипотетическом конструктивном доказательстве, которое сообщает нам, что таких чисел конечное количество. Не "не может быть бесконечно", а именно "конечно", ибо это не одно и то же.
Разумеется. Я ведь и говорил именно о конечности, а не об отрицании бесконечности, имея в виду конструктивное доказательство.
В последнем случае мы можем быть уверены в том, что доказавший располагает способом вычислить конкретное значение, которым ограничено количество объектов.
Он его и вычислил. Количество объектов ограничено числом
. Известно, что оценку можно понизить, но доказательство существенно усложняется по мере понижения верхней границы и в какой-то момент натыкается на неразрешимую проблему. При этом проверка каждого объекта вполне конструктивна и выполняется единым алгоритмом для всех натуральных чисел.
Вы исходите из того, что перебирающий "будет ждать" пока не наберётся ровно 100 штук, а поэтому если их меньше, то не дождётся.
Видите ли, по условию известно только, что объектов не более
, поэтому, пока мы
штук не набрали, у нас нет оснований остановить перебор.
Но очевидно, что разумные условия перебора не могут быть таковыми. Когда перебор закончится и в ящике не останется больше предметов, алгоритм остановится и об этом нам станет известно.
Не почему же "не могут"? Очень легко могут. Представьте себе, что наш "ящик" представляет собой растущий лабиринт...
Я понимаю, что Вы думаете, что с поиском совершенных чисел ситуация может быть иной, т.е. мы будем ждать 100-того числа. Так могло бы случится, если бы предъявленное нам доказательство того, что чисел не более 100, было неконструктивным. Но если оно конструктивно, то значит, что в алгоритм перебора будет заложен какой-то способ определения того, что числа закончились.
Почему Вы думаете, что конструктивное доказательство обязательно должно давать точное количество объектов? Предположим, что нас интересуют не просто совершенные числа. У нас есть некоторое число
, и нас для каждого
интересует наименьшее совершенное число, которое при делении на
даёт остаток
. Здесь прямо из определения видно, что найти требуется не более
чисел. Какие у Вас гарантии, что их действительно столько найдётся? Чего здесь неконструктивного? (Пример, конечно, условный.)