В том, что конструктивную математику применять якобы неудобно. Вы выразились даже так, что выкладки якобы увеличиваются в сотни и тысячи раз, что совершенно не соответствует действительности. В прикладных областях выкладки как правило ничем не отличаются.
Вам уже приводили пример про существование и единственность решения дифференциального уравнения (задачи Коши). Можно ещё привести: центральная предельная теорема в теории вероятностей, теоремы о преобразовании Фурье всякие (возможность почленного интегрирования, дифференцирования, обратимость и т.п.), существование и единственность решения уравнения теплопроводности, волнового уравнения в области и т.д. Скажете, что они неприкладные? Более прикладная: расчёт радиоантенны (типа мощность излучения, сопротивление, направленность и т.п.), не исключено, что своими конструктивными терминами Вы даже сформулировать задачу не сможете в таком виде, в каком она решение будет иметь.
маткиб писал(а):В классической математике такое различие тоже исчезает, если рассматривать непрерывные функции. И почему это вообще "заморочка"?
Это лишняя аксиома в прикладной теории, которую нужно проверять, обосновывать и т.п. А если у нас такой возможности нет, то получается заморочка.
Если теория прикладная, то проверять по-любому придётся. Вы же не знаете, какие функции в реальном мире бывают, а какие нет, придётся опытным путём выяснять. Вдруг и разрывные есть?
Любые два числа сравнимы (по определению), но сравнить мы их "пока" не можем. Замечательно! Меня такая логика неизменно приводит в восторг своей невменяемостью.
По-моему, если Вы ничего не знаете о голодающих в африке неграх, то лучше бы Вам о них ничего и не говорить...
А меня приводит в восторг Ваш субъективизм. Вы отрицаете, что реальность может существовать независимо от Вашего знания о ней?
Ха, я пока что из утверждений, полученных неконструктивным образом, не видел ни одного реально полезного.
А я видел массу полезных, примеры выше.
маткиб писал(а):Ну так не ставьте такие задачи
Правильно. И это называется "конструктивный подход".
Это называется "правильная постановка задачи". Конструктивный/неконструктивный подход - это относится уже к способу её решения.
Добавлено спустя 3 минуты 25 секунд:Алгоритмы не бывают "случайными" (по крайней мере в смысле конструктивной математики). И тому, кто привёл пример с числом, не было необходимости уточнять, о каком именно алгоритме идёт речь, поскольку подойдёт любой алгоритм, про который неизвестно, имеет ли он точку останова. Но если Вам нужен пример конкретного алгоритма, то я такой уже раньше где-то приводил: Перебираются все натуральные числа по очереди и алгоритм останавливается тогда, когда число оказывается нечётным совершенным.
Ну, про такое число я не могу сказать, равно оно 0 или нет, мои знакомые тоже не могут. Но что из этого?
Я например в таких случаях представляю себе воображаемого "решателя", который одним махом перебирает все числа и каждое проверяет на нечётность и совершенность. Что мне говорит этот "решатель", я не знаю, но знаю, что что-то говорит. И не вижу тут ничего противоестественного.
Добавлено спустя 8 минут 38 секунд:
Ещё про полезные применения.
В физике часто бывает удобно описывать явления с помощью разрывных функций: например, распространение ударной волны (не исключаю, что каким-то образом можно обойтись и непрерывными, но это резко увеличит выкладки). А у конструктивистов, как я понимаю, разрывных функций просто не бывает.