Вот и вы сейчас тоже придумываете какую-то разницу, видимо, исходя из идеи, что геометрию можно строить и без координат, но все эти математические тонкости, как мне кажется, нерелевантны для ньютоновской механики.
1. Теоретическая механика - это и есть изложение ньютоновской механики.
2. Даже готов согласиться, что СО и СК - это одно и то же. И не обязательно делать разницу. А разница в терминологии "исторически сложилась".
3. Но Вы же должны согласиться, что "построить радиус-вектор и другие кинематические векторы" и "разложить какой-нибудь вектор по базису" - это разные действия, и могут выполняться в разных СО\СК.
Равно мне кажется профдеформацией и попытка перенести теормех на классическую ныне школьную ньютоновскую механику, настаивая, что этот подход единственно верный. Немного другая терминология, другие методы решения задач.
Вот Вы тоже какую-то собственную терминологию вводите.
"Классическая ньютоновская механика" - это теория, а не её изложение в средних во всех смыслах школах.
-- 27.09.2024, 06:43 --drzewo(Оффтоп)
lel0lel в сообщении #1656216
писал(а):
Для обоснования тоже подразумевается переход в поворачивающуюся систему координат, в которой
?
да
ИМХО.
Непонимание, с которым Вам приходится сталкиваться (насколько понял - регулярно), связано не с непониманием инвариантности векторных формул.
Сам по себе факт независимости вектора от базиса, по которому он раскладывается, - вполне интуитивно понятен.
Непонимание возникает из-за перегруженности терминологии:
1. Сначала отождествляется СО и СК (например, как у Болотина и др., цитату приводил выше).
2. А потом под "переходом в другую СК" понимается разложение вектора по другому базису.
3. При том, что в общей физике под "переходом в другую СО" понимается переход к другому радиус-вектору и, соответственно, всё другие кинематические векторы тоже другие.