2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Диофантово уравнение с тремя неизвестными-2
Сообщение06.08.2024, 05:32 
Заслуженный участник


20/12/10
9042
Решите уравнение $x^3+y^3=(xyz-1)^2$ в натуральных числах.

Комментарий. Здесь рекомендуется не цепляться за симметрию и за возможность факторизовать левую часть, а сразу подумать, как можно было бы решать более общее уравнение с произвольной кубической формой (или даже многочленом) в левой части.

 Профиль  
                  
 
 Re: Диофантово уравнение с тремя неизвестными-2
Сообщение24.08.2024, 10:58 


23/02/12
3333
maxal в сообщении #1651096 писал(а):
Гораздо более ценно было бы описать как можно более общий метод и класс уравнений им решаемых.
Если конечно не ошибаюсь, то учитывая диофантово уравнение с тремя неизвестными 2, данный метод позволяет находить решения в натуральных числах для уравнения: $P(x_1,x_2,...,x_k)=ax^l_1 \cdot x^l_2  \cdot ...\cdot x^l_k \cdot x^2_{k+1}+ax_1 \cdot x_2 \cdot...\cdot x_k \cdot x_{k+1}+c$, где $P(x_1,x_2,...,x_k)$ и $c=c(x_1,x_2,...,x_k)$- многочлены $n$- степени от $k$ - переменных.
В этом случае, получаем уравнение 2-ой степени относительно $x__{k+1}$, которое может иметь натуральные решения.

В частном случае для уравнения
nnosipov в сообщении #1648600 писал(а):
$x^3+y^3=(xyz-1)^2$
получаем: $z=\frac {1+\sqrt{x^3+y^3}}{xy}$, которое должно быть натуральным. Далее решение проводится методом, который дал автор в теме Диофантово уравнение с тремя неизвестными -1.

 Профиль  
                  
 
 Re: Диофантово уравнение с тремя неизвестными-2
Сообщение24.08.2024, 17:22 
Заслуженный участник


20/12/10
9042
vicvolf в сообщении #1651245 писал(а):
Далее решение проводится методом, который дал автор в теме Диофантово уравнение с тремя неизвестными -1.
Вот и продемонстрируйте, как Вы поняли этот метод. То есть, напишите подробное решение.

 Профиль  
                  
 
 Re: Диофантово уравнение с тремя неизвестными-2
Сообщение24.08.2024, 18:30 


23/02/12
3333

(Оффтоп)

Спасибо, если будет желание и время.

 Профиль  
                  
 
 Re: Диофантово уравнение с тремя неизвестными-2
Сообщение25.08.2024, 11:02 


23/02/12
3333
nnosipov в сообщении #1648600 писал(а):
Решите уравнение $x^3+y^3=(xyz-1)^2$ в натуральных числах.
А почему такая формулировка, а не доказать, что данное уравнение не имеет решений в натуральных числах?

 Профиль  
                  
 
 Re: Диофантово уравнение с тремя неизвестными-2
Сообщение25.08.2024, 11:08 
Заслуженный участник


20/12/10
9042
Потому что оно их имеет.

 Профиль  
                  
 
 Re: Диофантово уравнение с тремя неизвестными-2
Сообщение25.08.2024, 11:13 


23/02/12
3333
nnosipov в сообщении #1651356 писал(а):
Потому что оно их имеет.
$x=1,y=2,z=2$. WolframAlpha выдал, что натуральных решений у него нет.

 Профиль  
                  
 
 Re: Диофантово уравнение с тремя неизвестными-2
Сообщение25.08.2024, 11:28 
Заслуженный участник


20/12/10
9042
vicvolf в сообщении #1651357 писал(а):
WolframAlpha выдал, что натуральных решений у него нет.
Вот и верь после этого людям...

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 8 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihiv, ИСН


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group