2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Пятое решение
Сообщение15.08.2024, 23:22 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
vicvolf в сообщении #1650205 писал(а):
Какое это имеет отношение к методам решения этой задачи?
Просто намек на большие числа в $5$-м решении. Про методы Вы самостоятельно домыслили.

 Профиль  
                  
 
 Re: Пятое решение
Сообщение16.08.2024, 00:37 
Заслуженный участник


20/12/10
9042
vicvolf в сообщении #1650205 писал(а):
Какое это имеет отношение к методам решения этой задачи?
Вы решите задачу, тогда и узнаете.

 Профиль  
                  
 
 Re: Пятое решение
Сообщение16.08.2024, 08:30 


16/08/19
113
vicvolf в сообщении #1650205 писал(а):
nnosipov в сообщении #1650181 писал(а):
vicvolf в сообщении #1650176 писал(а):
"Мы вносим несколько улучшений в методы поиска целочисленных решений для $x^3 + y^3 + z^3 = k$ для малых значений k. Мы реализовали эти улучшения на глобальной вычислительной сетке Charity Engine из 500 000 добровольных ПК и нашли новые представления для нескольких значений k, включая 3 и 42.


ну то есть использовали вычислительный кластер

 Профиль  
                  
 
 Re: Пятое решение
Сообщение16.08.2024, 12:01 
Админ форума


02/02/19
2460
 !  В этой теме обсуждается уравнение $x^2+xy+41y^2=(yz+1)^3$. Желающим обсудить уравнение $x^3+y^3+z^3=3$ лучше открыть отдельную тему.

 Профиль  
                  
 
 Re: Пятое решение
Сообщение26.08.2024, 04:54 


16/08/05
1152
$(x,y,z)=(n (-1 + 35208 m^2) - 27 m, 54 m, 326 m)$, где $(m,n)$ - решения уравнения Пелля $1 + 4401 m^2 = n^2$.

Но находится ли "пятое" решение в числе вышеобозначенных - не уверен.

 Профиль  
                  
 
 Re: Пятое решение
Сообщение26.08.2024, 07:21 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
dmd в сообщении #1651569 писал(а):
Но находится ли "пятое" решение в числе вышеобозначенных - не уверен.
Не находится. Слишком много цифр.
Всё-таки бесконечная серия?

 Профиль  
                  
 
 Re: Пятое решение
Сообщение26.08.2024, 08:15 
Заслуженный участник


20/12/10
9042
dmd
Поздравляю! Вы нашли бесконечную серию решений, первое из которых --- это $$
\begin{array}{l}
x=4293387399697056954108726505365687571644804220\backslash\\
\hphantom{x={}}8272674935531700803418062449349949764908192189,\\
y=1425130951477462725710468509272,\\
z=8603568336697274973733569148568.
\end{array}$$ Несмотря на большой прогресс, интрига все еще сохраняется: является ли это решение пятым в общем списке решений? (Решения считаем упорядоченными по $z$; если имеется несколько решений с одинаковым $z$, то их записываем в любом порядке.)

Кстати, найти бесконечную серию решений можно и для более общего уравнения $x^2+pxy+qy^2=(yz+1)^3$ (при некоторых ограничениях на $p$ и $q$).

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 22 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihiv, ИСН


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group