mathematician123Спасибо за ссылку. Вот теперь я не уверен, сам ли я придумал этот сюжет или, пролистывая форум, увидел эту тему, а потом забыл про нее. В любом случае, вычисление произведений такого типа по простым модулям происходит понятно как, но ответ не всегда можно записать в разумной форме. Как пример: вычислить

(для

эту задачу я предлагал для Сибирской мат. олимпиады в прошлом году, но ее не взяли). Конечно, здесь многочлен очень специальный, поэтому и ответ получается в простой форме.
(Оффтоп)
Взаимно рад нашему общению! Поскольку партия задач немаленькая (и еще будут), лучше их переваривать постепенно.