2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 41, 42, 43, 44, 45, 46, 47 ... 73  След.
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение13.06.2024, 15:20 
Заслуженный участник


20/08/14
11913
Россия, Москва
Можно и без графики, просто таблицей, и помнить что важны диагонали вправо-вверх (их можно раскрасить в разные цвета фона ячеек).

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение13.06.2024, 17:14 
Аватара пользователя


29/04/13
8421
Богородский
Dmitriy40 в сообщении #1642484 писал(а):
А напишите долю чистых и кэф превышения для 17-240 для 1e22

Ну вот пока доля чистых. Красные значения — прогнозные. 9-ю лестницу считаю пока волшебной в смысле постоянства доли чистых. Итоговое значение в 6.8 % весьма ориентировочное.
$$0-10^{22}$$
$\tikz[scale=.05]{
\node at (0,106){\text{25}};
\node at (0,97){\text{23}};
\node at (0,88){\text{21}};
\node at (0,79){\text{19}};
\node at (0,70){\text{17}};
\node at (0,61){\text{15}};
\node at (0,52){\text{13}};
\node at (0,43){\text{11}};
\node at (0,34){\text{9}};
\node at (0,25){\text{7}};
\node at (0,16){\text{5}};
\node at (0,7){\text{3}};
\draw (108,68) -- (108,77);
\draw (96,68) -- (108,68);
\draw (96,59) -- (96,68);
\draw (84,59) -- (96,59);
\draw (84,50) -- (84,59);
\draw (72,50) -- (84,50);
\draw (72,41) -- (72,50);
\draw (60,41) -- (72,41);
\draw (60,32) -- (60,41);
\draw (48,32) -- (60,32);
\draw (48,23) -- (48,32);
\draw (36,23) -- (48,23);
\draw (36,14) -- (36,23);
\draw (24,14) -- (36,14);
\draw (24,5) -- (24,14);
\draw (12,5) -- (24,5);
\fill [teal] (12,5) circle (1);
\draw (204,68) -- (204,77);
\draw (192,68) -- (204,68);
\draw (192,59) -- (192,68);
\draw (180,59) -- (192,59);
\draw (180,50) -- (180,59);
\draw (168,50) -- (180,50);
\draw (168,41) -- (168,50);
\draw (156,41) -- (168,41);
\draw (156,32) -- (156,41);
\draw (144,32) -- (156,32);
\draw (144,23) -- (144,32);
\draw (132,23) -- (144,23);
\draw (132,14) -- (132,23);
\draw (120,14) -- (132,14);
\draw (120,5) -- (120,14);
\draw (108,5) -- (120,5);
\fill [teal] (180,59) circle (1);
\fill [teal] (168,50) circle (1);
\fill [teal] (156,41) circle (1);
\fill [teal] (144,32) circle (1);
\fill [teal] (132,23) circle (1);
\fill [teal] (120,14) circle (1);
\fill [teal] (108,5) circle (1);
\draw (252,68) -- (252,77);
\draw (240,68) -- (252,68);
\draw (240,59) -- (240,68);
\draw (228,59) -- (240,59);
\draw (228,50) -- (228,59);
\draw (216,50) -- (228,50);
\draw (216,41) -- (216,50);
\draw (204,41) -- (216,41);
\draw (204,32) -- (204,41);
\draw (192,32) -- (204,32);
\draw (192,23) -- (192,32);
\draw (180,23) -- (192,23);
\draw (180,14) -- (180,23);
\draw (168,14) -- (180,14);
\draw (168,5) -- (168,14);
\draw (156,5) -- (168,5);
\fill [black] (252,77) circle (1);
\fill [black] (240,68) circle (1);
\fill [black] (228,59) circle (1);
\fill [black] (216,50) circle (1);
\fill [black] (204,41) circle (1);
\fill [black] (192,32) circle (1);
\fill [black] (180,23) circle (1);
\fill [black] (168,14) circle (1);
\fill [black] (156,5) circle (1);
\node at (12,0){\text{12}};
\node at (24,0){\text{24}};
\node at (36,0){\text{36}};
\node at (48,0){\text{48}};
\node at (60,0){\text{60}};
\node at (72,0){\text{72}};
\node at (84,0){\text{80}};
\node at (96,0){\text{96}};
\node at (108,0){\text{108}};
\node at (120,0){\text{120}};
\node at (132,0){\text{132}};
\node at (144,0){\text{144}};
\node at (156,0){\text{156}};
\node at (168,0){\text{168}};
\node at (180,0){\text{180}};
\node at (192,0){\text{192}};
\node at (204,0){\text{204}};
\node at (216,0){\text{216}};
\node at (228,0){\text{228}};
\node at (240,0){\text{240}};
\node at (252,0){\text{252}};
\node at (17,9){\text{905}};
\node at (113,9){\text{109}};
\node at (125,18){\text{105}};
\node at (137,27){\text{102}};
\node at (149,36){\text{103}};
\node at (161,45){\text{106}};
\node at (173,54){\text{109}};
\node at (185,63){\text{101}};
\node at (197,72)[red]{\text{105}};
\node at (209,81)[red]{\text{105}};
\node at (221,90)[red]{\text{105}};
\node at (233,99)[red]{\text{105}};
\node at (245,108)[red]{\text{105}};
\node at (245,99)[red]{\text{93}};
\node at (245,90)[red]{\text{83}};
\node at (245,81)[red]{\text{75}};
\node at (245,72)[red]{\text{68}};
}$

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение13.06.2024, 18:02 
Заслуженный участник


20/08/14
11913
Россия, Москва
Yadryara в сообщении #1642429 писал(а):
Dmitriy40 в сообщении #1629560 писал(а):
По таблице для 19-252.
До 5e25: 153.8939
На этом остановил, надоело, да и достаточно уже.
А теперь получается, что недостаточно, раз уж Вы другие паттерны считаете до 1e26.
Хорошо, пересчитал подробнее:
Код:
10^18: 0.002669670
10^19: 0.009557041
10^20: 0.036063900
10^21: 0.142718191
10^22: 0.589678622
10^23: 2.534067167
10^24: 11.288431304
1.5e24: 14.7
2e24: 17.8
3e24: 23.3
4e24: 28.2
5e24: 32.7
6e24: 36.9
7e24: 40.9
8e24: 44.8
9e24: 48.4
10^25: 51.974122756
1.5e25: 68.2
2e25: 82.8
3e25: 109
4e25: 132
5e25: 154
6e25: 174
7e25: 193
8e25: 212
9e25: 230
10^26: 246.691271526

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение13.06.2024, 18:35 
Аватара пользователя


29/04/13
8421
Богородский
Теперь кэфы. Их гораздо меньше. Ну вот, собственно, все известные.

Код:
Паттерн      От 0 до   Kпревыш.   Чистых    Кортежей  Обсчитано

   9- 84    1     E16    1.894    25.3 %      81588      1/  1
   9- 96    1     E16    1.826    17.5 %      87501      1/  1
   9-108    1     E16    1.788    12.8 %      87326      1/  1
   9-120    1     E16    1.735     9.0 %     442966      7/  7
   9-132    1     E16    1.675     5.9 %     488223      8/  8
   9-144    1     E16    1.621     4.0 %      54131      1/ 14    *
  11-132    1     E16    1.961     8.2 %        962      2/  2
  11-144    1     E16    1.970     5.7 %       1571      4/  4
  11-156    1     E16    1.915     4.2 %        949      3/  5    *

  11-132    2.148 E18    2.166    11.6 %      59143      2/  2
  11-144    2.148 E18    2.106     8.5 %     104962      4/  4
  11-156    2.148 E18    2.057     6.5 %      66367      3/  5    *
  13-168    2.148 E18    2.474     6.7 %         73      1/  1

  13-168    1     E19    2.649     7.4 %        221      1/  1

  15-180    1     E21    3.140     9.0 %         54      1/  1

И более-менее надёжные они только для 9-к и 11-к. И ни одного значения для нужного диапазона. Можно только очень примерно прикинуть для 22-й степени:

$$0-10^{22}$$
$\tikz[scale=.05]{
\node at (0,106){\text{25}};
\node at (0,97){\text{23}};
\node at (0,88){\text{21}};
\node at (0,79){\text{19}};
\node at (0,70){\text{17}};
\node at (0,61){\text{15}};
\node at (0,52){\text{13}};
\node at (0,43){\text{11}};
\node at (0,34){\text{9}};
\node at (0,25){\text{7}};
\node at (0,16){\text{5}};
\node at (0,7){\text{3}};
\draw (108,68) -- (108,77);
\draw (96,68) -- (108,68);
\draw (96,59) -- (96,68);
\draw (84,59) -- (96,59);
\draw (84,50) -- (84,59);
\draw (72,50) -- (84,50);
\draw (72,41) -- (72,50);
\draw (60,41) -- (72,41);
\draw (60,32) -- (60,41);
\draw (48,32) -- (60,32);
\draw (48,23) -- (48,32);
\draw (36,23) -- (48,23);
\draw (36,14) -- (36,23);
\draw (24,14) -- (36,14);
\draw (24,5) -- (24,14);
\draw (12,5) -- (24,5);
\fill [teal] (12,5) circle (1);
\draw (204,68) -- (204,77);
\draw (192,68) -- (204,68);
\draw (192,59) -- (192,68);
\draw (180,59) -- (192,59);
\draw (180,50) -- (180,59);
\draw (168,50) -- (180,50);
\draw (168,41) -- (168,50);
\draw (156,41) -- (168,41);
\draw (156,32) -- (156,41);
\draw (144,32) -- (156,32);
\draw (144,23) -- (144,32);
\draw (132,23) -- (144,23);
\draw (132,14) -- (132,23);
\draw (120,14) -- (132,14);
\draw (120,5) -- (120,14);
\draw (108,5) -- (120,5);
\fill [teal] (180,59) circle (1);
\fill [teal] (168,50) circle (1);
\fill [teal] (156,41) circle (1);
\fill [teal] (144,32) circle (1);
\fill [teal] (132,23) circle (1);
\fill [teal] (120,14) circle (1);
\fill [teal] (108,5) circle (1);
\draw (252,68) -- (252,77);
\draw (240,68) -- (252,68);
\draw (240,59) -- (240,68);
\draw (228,59) -- (240,59);
\draw (228,50) -- (228,59);
\draw (216,50) -- (228,50);
\draw (216,41) -- (216,50);
\draw (204,41) -- (216,41);
\draw (204,32) -- (204,41);
\draw (192,32) -- (204,32);
\draw (192,23) -- (192,32);
\draw (180,23) -- (192,23);
\draw (180,14) -- (180,23);
\draw (168,14) -- (180,14);
\draw (168,5) -- (168,14);
\draw (156,5) -- (168,5);
\fill [black] (252,77) circle (1);
\fill [black] (240,68) circle (1);
\fill [black] (228,59) circle (1);
\fill [black] (216,50) circle (1);
\fill [black] (204,41) circle (1);
\fill [black] (192,32) circle (1);
\fill [black] (180,23) circle (1);
\fill [black] (168,14) circle (1);
\fill [black] (156,5) circle (1);
\node at (12,0){\text{12}};
\node at (24,0){\text{24}};
\node at (36,0){\text{36}};
\node at (48,0){\text{48}};
\node at (60,0){\text{60}};
\node at (72,0){\text{72}};
\node at (84,0){\text{80}};
\node at (96,0){\text{96}};
\node at (108,0){\text{108}};
\node at (120,0){\text{120}};
\node at (132,0){\text{132}};
\node at (144,0){\text{144}};
\node at (156,0){\text{156}};
\node at (168,0){\text{168}};
\node at (180,0){\text{180}};
\node at (192,0){\text{192}};
\node at (204,0){\text{204}};
\node at (216,0){\text{216}};
\node at (228,0){\text{228}};
\node at (240,0){\text{240}};
\node at (252,0){\text{252}};
\node at (17,9){\text{}};
\node at (113,9){\text{}};
\node at (125,18){\text{}};
\node at (137,27){\text{}};
\node at (149,36)[red]{\text{1.9}};
\node at (161,45)[red]{\text{2.3}};
\node at (173,54)[red]{\text{2.9}};
\node at (185,63)[red]{\text{3.7}};
\node at (197,72)[red]{\text{4.6}};
\node at (209,81)[red]{\text{5.7}};
\node at (221,90)[red]{\text{7}};
\node at (233,99)[red]{\text{9}};
\node at (245,108)[red]{\text{}};
\node at (245,99)[red]{\text{}};
\node at (245,90)[red]{\text{}};
\node at (245,81)[red]{\text{}};
\node at (245,72)[red]{\text{}};
}$

Дальше уже больше фантазии, чем расчёты. Мне пока фантазировать не хочется. Но итоговый кэф для 17-240 я не вижу ниже 4-х.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение13.06.2024, 19:58 
Заслуженный участник


20/08/14
11913
Россия, Москва
Yadryara в сообщении #1642505 писал(а):
Но итоговый кэф для 17-240 я не вижу ниже 4-х.
А по факту он $\frac{0.068}{5/130}=1.77\ldots2.78=\frac{0.068}{6/245}$. И даже если есть пропущенные Врублёвским цепочки, то он станет ещё меньше, но никак не больше.
Так что прогноз увеличения кэфа мне видится не слишком обоснованным. Либо это всё стат.флуктуации и кэфы надо считать на сотнях/тысячах цепочек.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение13.06.2024, 22:10 
Аватара пользователя


29/04/13
8421
Богородский
Dmitriy40 в сообщении #1642522 писал(а):
Либо это всё стат.флуктуации и кэфы надо считать на сотнях/тысячах цепочек.

И без всяких либо. На тысячах, раз уж миллионов у нас нет. Сами же писали:

Dmitriy40 в сообщении #1603091 писал(а):
флуктуации могут быть достаточно сильными

Могли найтись 2 цепочки, а не 5? Конечно. И какой бы он тогда был? Вот такой:

$\frac{0.068}{2/154} \approx 5.24$

Да и 68 сомнительно. Когда мы не знаем точно долю чистых, то да, может быть удобней сразу множитель ч/к рассматривать.

Например, в данном случае для 0-1е25 фактический ч/к $\frac{5}{154} \approx 0.032$, а расчётный может быть $\frac{0.068}{4} = 0.017$

Dmitriy40 в сообщении #1642522 писал(а):
Так что прогноз увеличения кэфа мне видится не слишком обоснованным.

Не слишком. Но куда от роста деваться-то. С чего вдруг он прекратится? Другие прогнозы ещё менее обоснованы.

Подробнее позже.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение14.06.2024, 05:58 
Аватара пользователя


29/04/13
8421
Богородский
Dmitriy40 в сообщении #1642504 писал(а):
Код:
10^26: 246.691271526

По 19-252.
Допустим, я позволю оптимизму взять верх и отступлю.
Пусть доля чистых для 25-й степени будет не 5-8%, а 7-9%. А кэф не 5-10, а 4.8-6.

В плохом варианте:
$$\frac{52\cdot0.07}{6}\approx 0.607$$
В хорошем:
$$\frac{52\cdot0.09}{4.8}=0.975$$
То бишь в лучшем случае 1 цепочку на 0-1е25 худо-бедно наскребли.

Тогда для 26-й степени доля чистых будет аж 8-10%, а кэф — 5-6.2.

В плохом варианте:
$$\frac{246.7\cdot0.08}{6.2}\approx 3.18$$
В хорошем:
$$\frac{246.7\cdot0.10}{5}\approx 4.93$$
Ну то есть грубо говоря можно ожидать от 0.6 до 1-го кортежа до 1е25 и от 3-х до 5 кортежей для 0-1е26.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение14.06.2024, 12:16 
Заслуженный участник


20/08/14
11913
Россия, Москва
Yadryara в сообщении #1642543 писал(а):
Другие прогнозы ещё менее обоснованы.
Мне пока больше нравится собственный прогноз ещё с 4-й страницы темы про 3% долю для первой цепочки от общего количества, по 15-180 и 17-240, не вижу существенных причин ей резко измениться для 19-252. Буду оптимистом. :mrgreen: Десятки лет считать не хочется. Как и разбираться как запустить хорошо оптимизированную прогу на совершенно разных компах (и ОС) в боинке (да ещё и искать тот боинк где согласятся это посчитать), хотя если до 5-7e24 не найдётся, то видимо придётся ... Или забить.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение16.06.2024, 09:14 
Аватара пользователя


29/04/13
8421
Богородский
Yadryara в сообщении #1641625 писал(а):
Код:
3 - 96            180         193         1/1
5 -108            183         196         4/4
7 -120
9 -132            174         187         8/8
11-144            171         184         4/4

И этот пробел тоже закрыт:

8-я лестница, верхушка.
Код:

Паттерны     0 - 1e25    0 - 1e26    Обсчитано

3 - 96            180         193         1/1
5 -108            183         196         4/4
7 -120            180         193        14/14
9 -132            174         187         8/8
11-144            171         184         4/4

Dmitriy40 в сообщении #1642643 писал(а):
Мне пока больше нравится собственный прогноз ещё с 4-й страницы темы про 3% долю для первой цепочки от общего количества, по 15-180 и 17-240,

Ну то есть сами говорили про то, что надо по сотням-тысячам смотреть, и сами же пошли в обратную сторону, то есть от всего лишь 5-6 решили вернуться к оценке вообще по одной-единственной цепочке?? Серьёзно?

А зачем мы тогда столько считали? Разве не для того, чтобы поточнее прогноз дать? Я кстати уже намекал, что 13-168 надо бы считать дальше. И 15-180 тоже. Всё-ж таки побольше набрать чем 221 и 54 штуки.

Dmitriy40 в сообщении #1642643 писал(а):
не вижу существенных причин ей резко измениться для 19-252.

А что, для флуктуаций нужны какие-то существенные причины? Если для 17-240 2.9%, а для 15-180 — 2.6 %, то почему для 19-252 не может быть 1.2-1.9 % ??

Это же одна-единственная цепочка, она может и намного раньше времени найтись и сильно припоздниться. Может выберу время, посмотрю — как там для других кортежей, небось показатель гуляет ещё сильнее.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение17.06.2024, 11:40 
Заслуженный участник


20/08/14
11913
Россия, Москва
Yadryara в сообщении #1642849 писал(а):
Ну то есть сами говорили про то, что надо по сотням-тысячам смотреть, и сами же пошли в обратную сторону, то есть от всего лишь 5-6 решили вернуться к оценке вообще по одной-единственной цепочке?? Серьёзно?
Я бы с удовольствием оценил коэффициенты по тысячам цепочек около 1e23-1e25, но таковых мне неизвестно. И да, я понимаю про флуктуации.
Yadryara в сообщении #1642849 писал(а):
А зачем мы тогда столько считали? Разве не для того, чтобы поточнее прогноз дать?
Да, для этого. Только пока точность той простой оценки вроде бы так и не превысили. Хотя заметно лучше стали понимать диапазон разброса.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение17.06.2024, 12:29 
Аватара пользователя


29/04/13
8421
Богородский
Yadryara в сообщении #1642849 писал(а):
А что, для флуктуаций нужны какие-то существенные причины? Если для 17-240 2.9%, а для 15-180 — 2.6 %, то почему для 19-252 не может быть 1.2-1.9 % ??

Да, может конечно. Вот, например, первый 11-132 сильно припозднился и у него этот ч/к всего лишь 1.0 %. А первый кортеж 13-168, наоборот, нашёлся очень рано и у него ч/к аж 7.6 %. Посчитал, уточняю: для 15-180 ч/к 2.5 %, а не 2.6 %.

Dmitriy40 в сообщении #1643087 писал(а):
Только пока точность той простой оценки вроде бы так и не превысили.

Разве?

Код:
Паттерн Чистых    ч/к  Обсчитан      1-й кортеж

11-132      43     10      1/2       8560457291921
11-132      33     28      2/2       1542186111157

13-168      33     76      1/1       660287401247633
15-180      63     25      1/1       3112462738414697093
17-240             29      1/3       1006882292528806742267

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение17.06.2024, 16:04 
Аватара пользователя


29/04/13
8421
Богородский
Считаю дальше. Уже встретилось значение ч/к всего лишь 0.3 % и кэфы превышения 0.2 и почти 7.

Код:
Паттерн Чистых    ч/к  Обсчитан      1-й кортеж

11-132      43     10      1/2       8560457291921
11-132      33     28      2/2       1542186111157
11-144      21     16      1/4       1743910217977
11-144      23     28      2/4       2191928510377
11-144      20     22      3/4       1560544042637
11-144      21     24      4/4       1949632298137
11-156      10     64      1/5       418588495811
11-156      13     20      2/5       1395213513871
11-156      22      3      3/5       31444491815963
11-156                     4/5       6244610270081
11-156                     5/5       6356764584593
13-168      33     76      1/1       660287401247633
15-180      63     25      1/1       3112462738414697093
17-240             29      1/3       1006882292528806742267
17-240                     2/3       24300494153317939112651
17-240                     3/3       258406392900394343851

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение19.06.2024, 05:47 
Аватара пользователя


29/04/13
8421
Богородский
Dmitriy40 в сообщении #1642504 писал(а):
2e24: 17.8

Я надеюсь, Вы понимаете, что кэф превышения распространяется на все кортежи, а не только на чистые. Вы небось уже досчитали до 2е24 ? И где же эти 18 кортежей с валидс=19 ? Было объявлено только об одном. И, если судить по этому единственному, то кэф не 5 и не 10, а те самые 17.8.

Нужно знать количество грязных кортежей. Jarek их должен был найти весьма много и для 15-к и для 17-к. Может они у него в логах сохранились? У кого есть контакт Jarekа прошу спросить. Надеюсь, появится в теме.

Запустил обсчёт 4-го 11-156.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение19.06.2024, 07:10 
Аватара пользователя


29/04/13
8421
Богородский
Yadryara в сообщении #1643239 писал(а):
Нужно знать количество грязных кортежей.

Ну так может уже есть:

Dmitriy40 в сообщении #1640453 писал(а):
Всё, 13-168 досчитались до 1e19, их оказалось 221шт

Только чистые считали? Или всё-таки по старой схеме:

$valids=13, len=13 - 221;$

$valids=13, len=14 - .... ;$

$valids=13, len=15 - ... ;$

Ведь у нас есть именно среднечастотные расклады, правда не по 1е19, а по 9е18. Например:

Код:
v=[0, 18, 24, 48, 60, 78, 84, 90, 108, 120, 144, 150, 168]

0.0009e22: 0.073806, 0.208850, 0.276737, 0.228299, 0.131514, 0.056241, 0.018531, 0.004820, 0.001005, 0.000170, 0.000023, 0.000003, 0.000000, ... sum=1.323329706e1302856086

Их можно пересчитать в штуки и сразу море инфы по кэфам получить.

Именно для 1е19 тоже вроде недолго пересчитать — у меня меньше двух часов. Если Дмитрий догадался во время 2-дневного счёта считать и грязные тоже — отлично.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение19.06.2024, 17:18 
Заслуженный участник


20/08/14
11913
Россия, Москва
Yadryara в сообщении #1643239 писал(а):
Я надеюсь, Вы понимаете, что кэф превышения распространяется на все кортежи, а не только на чистые.
А Вы уверены что он одинаков для всех грязных?
Yadryara в сообщении #1643239 писал(а):
Вы небось уже досчитали до 2е24 ?
Нет, только до 1.55e24.
Yadryara в сообщении #1643239 писал(а):
И где же эти 18 кортежей с валидс=19 ? Было объявлено только об одном.
Сам удивляюсь, только один и есть.
Yadryara в сообщении #1643239 писал(а):
Нужно знать количество грязных кортежей. Jarek их должен был найти весьма много и для 15-к и для 17-к. Может они у него в логах сохранились?
Ой не факт, не любая программа получает грязные кортежи, например программы НМ обычно грязных не получают, у неё len=19 всегда, а вот valids может быть любым.
Yadryara в сообщении #1643242 писал(а):
Только чистые считали?
Да, только чистые.
Yadryara в сообщении #1643242 писал(а):
Если Дмитрий догадался во время 2-дневного счёта считать и грязные тоже — отлично.
Не догадался, я же боинк перепроверял, а там грязных в принципе нет.
Yadryara в сообщении #1643242 писал(а):
Их можно пересчитать в штуки и сразу море инфы по кэфам получить.
ОК, сейчас запущу подсчёт с грязными, до 1e18 досчитает за часов 5, ещё сегодня.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 1085 ]  На страницу Пред.  1 ... 41, 42, 43, 44, 45, 46, 47 ... 73  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group