Переходя к математике - идеальному миру, мы принимаем, что ряд натуральных чисел неограничен, к любому числу можно прибавить единицу. Это интуитивно очевидно, потому что до некоторого предела мы можем это делать в реальности с реальными предметами, а в воображении мы можем это делать всегда. Но аналогичная идея касается и дробления, мы в реальной жизни можем метр последовательно трижды разделить на 10 делений, а в своём воображении мы всегда можем приблизить линейку и увидеть там новые деления.
Ищу изложение оснований математики близкое к этим моим представлениям. Отмечу что-то похожее у Клейна, он пишет об интуитивном представлении вещественного числа, а также о целесообразности разделения математики на точную и приближённую. Вот эта идея с разделением математики представляется интересной, кажется она может красиво разрешить некоторые "костыли" типа неоднозначного представления чисел в виде десятичных дробей.
Здесь я предпочел бы остановиться еще на том, чего вы в книгах обыкновенно не найдете: именно, на том, как можно перейти от изложенной здесь арифметической теории иррациональных чисел к их применению в других областях. В особенности я имею в виду здесь аналитическую геометрию, которую иногда по наивной интуиции принимают за источник иррациональных чисел и которая психологически действительно является этим источником.
Если мы возьмем числовую ось, на которой, как выше, нанесены начало и все рациональные точки, то основное положение, на котором покоится это применение, гласит: каждому рациональному или иррациональному числу отвечает точка, имеющая это число своей координатой; каждой точке на прямой отвечает в качестве координаты рациональное или иррациональное число.
Такого рода исходное положение, которое стоит во главе дисциплины, из которого все дальнейшее вытекает чисто логически, тогда как само оно не может быть логически доказано, мы называем аксиомой. Отдельные математики в зависимости от сложившихся у них взглядов смотрят на аксиому как на интуитивно ясную истину или как на более или менее произвольное соглашение. Настоящая аксиома о взаимно однозначном соответствии между всеми действительными числами, с одной стороны, и точками прямой, с другой стороны, обыкновенно называется аксиомой Кантора, который первый точно ее сформулировал (в 1872 г.).
Здесь будет уместно сказать несколько слов о природе наших пространственных представлений.
Это выражение, строго говоря, можно понимать двояко: с одной стороны, можно иметь в виду непосредственное чувственное, эмпирическое представление о пространстве, которое мы контролируем при помощи измерения; с другой стороны, — отвлеченное, внутреннее представление о пространстве, можно было бы сказать, присущую нам идею о пространстве, которая возвышается над неточностью чувственных восприятий. Такого рода различие вообще имеет место при каждом интуитивном представлении, как я уже имел случай указать по поводу развития понятия числа; лучше всего оно поясняется, быть может, следующим примером. Что означает небольшое число 2, 5 или 7, нам непосредственно ясно, но о больших числах, например о числе 2503, мы уже не имеем такого непосредственного, наглядного представления. Здесь, напротив, находит себе применение внутреннее представление о расположенном числовом ряде, которое мы себе составляем, исходя из начальных чисел, при помощи совершенной индукции. Что касается представления о пространстве, то дело обстоит так: если мы рассматриваем расстояние между двумя точками, то мы можем оценить и измерить его лишь с ограниченным приближением, так как наш глаз неспособен различать отрезки, имеющие длину ниже некоторой границы; это есть так называемый порог ощущения — понятие, играющее чрезвычайно важную роль во всей психологии. Но по существу дело не изменяется и в том случае, если мы усиливаем наш глаз самыми тонкими инструментами, так как и они имеют известные границы точности. Таким же образом и при всяких других физических наблюдениях и измерениях мы наталкиваемся на такого рода пороги ощущения, которые устанавливают предел возможной точности. Указания, попадающие за эти пределы, никакого значения уже не имеют и свидетельствуют с невежестве или даже о недобросовестности.
В противоположность этому свойству эмпирического представления о пространстве, необходимо ограниченного известным приближением, абстрактное или идеальное представление о пространстве обладает неограниченной точностью и в силу канторовой аксиомы обнаруживает полный параллелизм с арифметическим пониманием числа.
В соответствии с этим целесообразно и саму математику разделить на две части: на математику точную и математику приближенную. Выясним это различие на примере уравнения
. В приближенной математике, как и в случае наших действительных эмпирических представлений, речь идет не о том, чтобы
точно обратилось в нуль, а только о том, чтобы значение функции
оказалось ниже достижимого порога точности; таким образом, равенство
должно служить только сокращенным выражением неравенства
с которым фактически и приходится иметь дело. Выполнение же строгого требования равенства
составляет уже задачу точной математики. Так как в приложениях играет роль только приближенная математика, то можно, выражаясь грубо, сказать, что мы имеем потребность, собственно, в этой последней дисциплине, между тем как точная математика существует только для удовольствия тех, которые ею занимаются, а в остальном составляет лишь опору для математики приближенной.
https://www.mathedu.ru/text/kleyn_eleme ... _1987/p54/