2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 6, 7, 8, 9, 10, 11, 12 ... 73  След.
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение10.03.2024, 15:59 
Аватара пользователя


29/04/13
8307
Богородский
vicvolf в сообщении #1632390 писал(а):
У Вас все как-то наоборот.

У меня все наоборот ?? Что все ?

vicvolf в сообщении #1632390 писал(а):
Для чего нужна предварительная оценка трудоемкости счета задачи? Для того, чтобы не тратить время на пока неразрешимые.

Согласен. И что? Неужто вы думаете, что Dmitriy40 не делал прикидок прежде чем начал считать?

vicvolf в сообщении #1632390 писал(а):
Dmitriy40 в сообщении #1632376 писал(а):
Или брошу эту затею.
Вот именно!

Что вот именно? Вы вот это читали?

Dmitriy40 в сообщении #1627045 писал(а):
Заднюю давать нет причин

То есть вы вместо того, чтобы помочь со счётом, считаете, что его надо бросить?

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение10.03.2024, 16:15 
Заслуженный участник


20/08/14
11867
Россия, Москва
vicvolf
Yadryara в сообщении #1632395 писал(а):
Неужто вы думаете, что Dmitriy40 не делал прикидок прежде чем начал считать?
Делал конечно. Правда ошибся, взял не те цепочки, и тренд показал что 19-252 должна найтись аж до 3e23, докуда считать было несколько месяцев, это достаточно вменяемый срок. Более правильная оценка даёт 2e24, туда считать ещё месяцев 7 если не ускорить программу, чем и занимаюсь, потому что учёт коэффициента запаса 2-3 (цепочки реально так разлетаются) даёт уже до 6-7e24, а это несколько лет счёта текущей программой, что конечно перебор. Но вполне может найтись и уже вот-вот. 19-ки не минимального диаметра нашлись чуть не в 5 раз раньше ожидаемого, так что выбросы от среднеожидаемого могут быть весьма приличными (несколько раз).

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение11.03.2024, 16:09 
Заслуженный участник


20/08/14
11867
Россия, Москва
gris
Досчиталась и вторая Ваша таблица, num15, до 1e15 найдено 26940 элементов, файл в облаке обновил. Счёт прекращён.
Что интересно, с valids=9 (меньшие найдены все) не найден всего один (из 6435) симметричный элемент. Запустил его поиск отдельно, к ночи думаю найдётся.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение11.03.2024, 17:21 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Dmitriy40, спасибо!

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение11.03.2024, 19:02 
Заслуженный участник


20/08/14
11867
Россия, Москва
Нашлась:
1150329063204547: [0, 4, 22, 36, 66, 84, 100, 106, 120, 130, 136, 156, 174, 204, 220, 226, 240], num15=7324, valids=9

167 штук отсутствующих valids=10 искать лень.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение11.03.2024, 19:20 


23/02/12
3372
Yadryara в сообщении #1632395 писал(а):
То есть вы вместо того, чтобы помочь со счётом
Извините, какое у Вас право требовать, чтобы Вам помогали? Вы можете только просить.
Yadryara в сообщении #1632395 писал(а):
считаете, что его надо бросить?
Здесь каждый решает для себя. Лично я бы и не начинал. Считаю это бесполезным. Это чистый спорт, а не наука. Интерес е $k$- кортежам у меня сугубо теоретический.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение11.03.2024, 19:36 
Аватара пользователя


29/04/13
8307
Богородский
vicvolf в сообщении #1632500 писал(а):
Извините, какое у Вас право требовать, чтобы Вам помогали?

:-) Согласен, никакого. Только неплохо бы Dmitriy40 помочь, а не мне.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение11.03.2024, 19:55 


23/02/12
3372
Yadryara в сообщении #1632501 писал(а):
vicvolf в сообщении #1632500 писал(а):
Извините, какое у Вас право требовать, чтобы Вам помогали?

:-) Согласен, никакого.
Тогда чего Вы так переживаете? А Вы на своем компе таким счетом занимаетесь?
Yadryara в сообщении #1632501 писал(а):
Только неплохо бы Dmitriy40 помочь, а не мне.
Если Дмитрий сам обратится с каким-то теоретическим вопросом, то постараюсь помочь, если смогу.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение11.03.2024, 20:18 
Аватара пользователя


29/04/13
8307
Богородский
vicvolf в сообщении #1632503 писал(а):
А Вы на своем компе таким счетом занимаетесь?

Увы. Мой комп для этого малопригоден. Но идеи для ускорения счёта я подбрасывал. См. кортежные темы.

Сейчас вот пытался другим способом оценить соотношение грязных и чистых кортежей. И новости всё же хорошие.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.03.2024, 03:13 
Заслуженный участник


20/08/14
11867
Россия, Москва
gris
Ещё несколько цепочек:
1007395651801927: [0, 34, 36, 64, 66, 70, 90, 114, 124, 126, 150, 154, 174, 180, 216, 234, 240], num15=2923, valids=10
1191850509109837: [0, 16, 24, 36, 66, 84, 90, 114, 120, 126, 142, 156, 174, 196, 202, 210, 240], num15=16344, valids=12
1700568727917733: [0, 6, 24, 36, 66, 88, 90, 114, 120, 126, 150, 156, 174, 178, 216, 234, 240], num15=31739, valids=15
2114603103156763: [0, 10, 24, 36, 66, 84, 90, 114, 120, 126, 150, 156, 190, 198, 226, 238, 240], num15=16368, valids=12
А эти нашёл среди данных боинка:
1554944739656527: [0, 4, 16, 46, 66, 84, 90, 114, 120, 126, 150, 156, 174, 186, 204, 234, 240], num15=4089, valids=12
3692939714570017: [0, 4, 36, 46, 66, 84, 90, 114, 120, 126, 150, 156, 174, 192, 216, 234, 240], num15=4091, valids=13
4066905498223787: [0, 14, 24, 60, 66, 84, 90, 114, 120, 126, 150, 156, 174, 200, 216, 230, 240], num15=12282, valids=13
5787548433002737: [0, 10, 22, 36, 66, 84, 90, 114, 120, 126, 150, 156, 174, 192, 220, 232, 240], num15=8184, valids=12
7184298747301217: [0, 6, 24, 62, 66, 84, 90, 114, 120, 126, 150, 156, 174, 194, 222, 224, 240], num15=28664, valids=13
7849758790696217: [0, 6, 14, 42, 66, 84, 90, 114, 120, 126, 150, 156, 174, 176, 204, 234, 240], num15=20473, valids=13
9297384447350933: [0, 14, 24, 26, 66, 84, 90, 114, 120, 126, 150, 156, 174, 224, 230, 234, 240], num15=12281, valids=13
111833871030817847: [0, 2, 32, 36, 66, 84, 90, 114, 120, 126, 150, 156, 174, 204, 216, 224, 240], num15=8190, valids=14
3241648437603927893: [0, 14, 24, 36, 66, 84, 90, 114, 120, 126, 150, 156, 174, 204, 216, 234, 240], num15=16383, valids=16
И в таблицу num17 (тоже из боинка):
1803152589470137: [0,24,34,64,66,72,90,96,120,126,132,156,162,180,220,232,244,246,252], num17=8177, valids=12

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.03.2024, 20:47 


23/02/12
3372
Yadryara в сообщении #1629203 писал(а):
Теоретический максимум, как понимаю, 43. То есть если взять 253 идущих подряд натуральных числа, не с самого начала, а например, с 63000, простых чисел в такой цепочке будет не более 43-х.

Dmitriy40 в сообщении #1629205 писал(а):
Для симметричных кортежей нечётной длины (не уверен насчёт самого короткого) - да, там же требование одинакового остатка по модулю 6 для всех чисел паттерна вылезает, так что $\lfloor\frac{252}{6}\rfloor+1=43$.
Это известный доказанный факт, что все простые числа, начиная с $5$ находятся на последовательностях: $6k-1,6k+1$. Не надо ждать до $63000$ :facepalm:
Dmitriy40 в сообщении #1629205 писал(а):
Кажется это максимально плотный паттерн диаметром 252 - исключая начало числового ряда, где есть и цепочки длиной 53 (с простого 5)
Это пример простых на этих последовательностях с максимальным их количеством в кортеже диаметром 252, далее этот кортеж конечно не повторяется, так как содержит полную систему вычетов по модулю $3$.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.03.2024, 21:07 
Аватара пользователя


29/04/13
8307
Богородский
vicvolf в сообщении #1632629 писал(а):
Это известный доказанный факт, что все простые числа, начиная с $5$ находятся на последовательностях: $6k-1,6k+1$.

Мы в курсе.

vicvolf в сообщении #1632629 писал(а):
Не надо ждать до $63000$ :facepalm:

А при чём тут надо ждать или не надо? Вопрос был о максимальном количестве простых в интервале выше этой отметки. Похоже что 51 простое может быть. Но даже с 44 нет ни одного примера.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.03.2024, 21:10 
Заслуженный участник


20/08/14
11867
Россия, Москва
vicvolf в сообщении #1632629 писал(а):
Это известный доказанный факт, что все простые числа, начиная с $5$ находятся на последовательностях: $6k-1,6k+1$.
Процитированное моё утверждение более сильное: интересующие нас цепочки располагаются не просто на двух последовательностях, а строго на одной (любой). Потому и 43, а не 43 (или даже 23) простых близнеца подряд. :mrgreen:

-- 12.03.2024, 21:52 --

Yadryara в сообщении #1632633 писал(а):
Вопрос был о максимальном количестве простых в интервале выше этой отметки. Похоже что 51 простое может быть.
Может, во всяком случае оба паттерна длиной 51 диаметром 252 не запрещены ни по какому модулю, значит гипотеза Диксона в силе.

-- 12.03.2024, 22:10 --

Yadryara в сообщении #1632633 писал(а):
Но даже с 44 нет ни одного примера.
44 это конечно заоблачно, а вот с 33 и 30 сильно подальше есть:
112909: [0, 4, 10, 12, 18, 30, 42, 58, 70, 88, 102, 108, 112, 114, 118, 130, 132, 142, 154, 172, 174, 180, 184, 202, 208, 214, 222, 234, 238, 240, 244, 250, 252], len=33
112919: [0, 2, 8, 20, 32, 48, 60, 78, 92, 98, 102, 104, 108, 120, 122, 132, 144, 162, 164, 170, 174, 192, 198, 204, 212, 224, 228, 230, 234, 240, 242, 248, 252], len=33
112921: [0, 6, 18, 30, 46, 58, 76, 90, 96, 100, 102, 106, 118, 120, 130, 142, 160, 162, 168, 172, 190, 196, 202, 210, 222, 226, 228, 232, 238, 240, 246, 250, 252], len=33
70872264271: [0, 6, 12, 18, 22, 30, 42, 48, 58, 70, 72, 76, 96, 100, 102, 112, 118, 120, 132, 160, 172, 180, 186, 202, 208, 228, 232, 238, 246, 252], len=30

Кстати цепочек длиной 19 и диаметром 252 до 1e12 найдено 4085002 штуки, очень немало я бы сказал. При заполнении таблицы num17 до 1e15 для gris подсчёт общего количества цепочек не вёлся. Оценка по $\pi(x)=x/\ln x$ даёт величину порядка 3.2 млрд штук.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.03.2024, 22:15 
Заслуженный участник


20/08/14
11867
Россия, Москва
Dmitriy40 в сообщении #1632634 писал(а):
Кстати цепочек длиной 19 и диаметром 252 до 1e12 найдено 4085002 штуки, очень немало я бы сказал. При заполнении таблицы num17 до 1e15 для gris подсчёт общего количества цепочек не вёлся. Оценка по $\pi(x)=x/\ln x$ даёт величину порядка 3.2 млрд штук.
Сорри, 4085002 штук до 1e11, а до 1e15 оценка соответственно около 30 млрд шт.

 Профиль  
                  
 
 Re: кортежи последовательных простых. ключ к 19-252
Сообщение12.03.2024, 22:22 


23/02/12
3372
Dmitriy40 в сообщении #1632634 писал(а):
цепочки располагаются не просто на двух последовательностях, а строго на одной (любой).
Если Вы под цепочкой понимаете бесконечную последовательностей простых кортежей определенного вида, то это неверно для простых близнецов. Один из простых близнецов находится на последовательности $6k-1$, другой на - $6k+1$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 1085 ]  На страницу Пред.  1 ... 6, 7, 8, 9, 10, 11, 12 ... 73  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Google [Bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group